UNCOUNTABLY MANY MUTUALLY DISJOINT, SIMPLY CONNECTED, CONTRACTIBLE AND FRECHET DIFFERENTIABLE SUBSETS OF THE SPHERE IN ℓ^{2}, EACH OF WHICH IS DENSE IN THE SPHERE

SAM H. CRESWELL

Abstract

Each sphere in ℓ^{2} contains uncountably many mutually disjoint, simply connected, Frechet differentiable and contractible subsets, each of which is dense in the sphere.

1. Introduction

This paper is a sequel to the author's work in [1]. Accordingly, we shall summarize the parts of the prior paper which are satisfactory for our purposes.

Definition 1. For $c \in \mathbb{R}$, define X_{c} to be the set of all real-valued sequences $x=\left(x_{i}\right) \in \ell^{1}$ such that $\sum x_{i}=c$.

Definition 2. The sphere with center x and radius r is

$$
S_{x, r} \stackrel{\text { def }}{=}\left\{y \in \ell^{2} \mid\|x-y\|=r\right\} .
$$

In [1] it was shown that if $c \in \mathbb{R}, X_{c}$ is dense in ℓ^{2} and is an affine subspace of ℓ^{2}. Thus, $\left\{X_{c}\right\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint affine subsets of ℓ^{2}, each of which is dense in ℓ^{2}.

Furthermore, if $c \in \mathbb{R}$ and $S=S_{x, r}$ for an $x \in \ell^{2}$ and $r>0$ is a sphere in ℓ^{2}, X_{c} is dense in S. With these preliminaries, it was shown that any sphere S in ℓ^{2} contains uncountably many mutually disjoint path-connected subsets, each of which is dense in S.

In this paper, we shall not use the constructions provided in [1]. The strengthened results provided here are consequences of constructing subsets of $X_{c} \bigcap S$ which are more amenable to analysis than the corresponding constructions in [1].
[3] is a contemporary source of information about Hilbert spaces.
We should emphasize what we are not trying to accomplish in this and subsequent sections. We are not attempting to show that $X_{c} \bigcap S$ is simply connected and contractible, while being dense in S. Rather, we will show
that there is a subset C_{c}, to be defined below, of $X_{c} \bigcap S$ which is simply connected and contractible, while being dense in S. As $C_{c} \subset X_{c} \bigcap S \subset X_{c}$, it follows that if $c \neq d$, then C_{c} and C_{d} are disjoint as they are subsets of the disjoint sets X_{c} and X_{d}, respectively.

2. Path Connectedness of C_{c} For $c \in \mathbb{R}$

Definition 3.

$$
\begin{aligned}
& \pi\left(p_{0}, p_{1}, q\right) \stackrel{\text { def. }}{=} \text { the plane containing } p_{0}, p_{1} \text { and } q \text { such that } p_{0}, p_{1} \in X_{c} \cap S \\
& \qquad q \in X_{c}, q \notin \overleftrightarrow{p_{0} p_{1}} .
\end{aligned}
$$

As p_{0}, p_{1}, and q are points of X_{c} and X_{c} is affine, $\pi\left(p_{0}, p_{1}, q\right) \subset X_{c}$.

Definition 4.

$$
\begin{gathered}
\left\{C_{c}\right\}_{c \in \mathbb{R}} \stackrel{\text { def. }}{=}\left\{S \cap \pi\left(p_{0}, p_{1}, q\right) \mid p_{0}, p_{1} \in X_{c} \cap S\right. \\
\left.q \in X_{c}, q \notin \overleftarrow{p_{0} p_{1}}\right\} .
\end{gathered}
$$

Let the sphere S in ℓ^{2} have center $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and radius r. Let $p_{0}, p_{1} \in X_{c} \cap S$ and $q \in X_{c}$ such that q is not on the line containing p_{0} and p_{1}. Let $\pi\left(p_{0}, p_{1}, q\right)$ denote the plane containing p_{0}, p_{1}, and q. We may create a new orthonormal basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots\right\}$ by letting e_{1}^{\prime} be $\frac{p_{1}-p_{0}}{\left\|p_{1}-p_{0}\right\|}$, letting e_{2}^{\prime} be a normalized vector in $\pi\left(p_{0}, p_{1}, q\right)$ which is perpendicular to e_{1}^{\prime} at p_{0}, and for $i \geq 3$, constructing e_{i}^{\prime} by the Gram-Schmidt Orthonormalization process.

Note that $p_{0}=(0,0, \ldots), x=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots\right)$, and a point y is in $\pi\left(p_{0}, p_{1}, q\right)$ if and only if for $i \geq 3, y_{i}^{\prime}=0$. Let $H=\left(x_{1}^{\prime}, x_{2}^{\prime}, 0,0, \ldots\right)$. Define u, v, and w by:

$$
\begin{aligned}
u & =x-H=\left(0,0, x_{3}^{\prime}, x_{4}^{\prime}, \ldots\right) \\
v & =p_{0}-H=\left(-x_{1}^{\prime},-x_{2}^{\prime}, 0,0, \ldots\right), \quad \text { and } \\
w & =p_{1}-H=\left(p_{1_{1}}^{\prime}-x_{1}^{\prime}, p_{1_{2}}^{\prime}-x_{2}^{\prime}, 0,0, \ldots\right)
\end{aligned}
$$

Thus, $\langle u, w\rangle=\langle u, v\rangle=0$ and $H=\left(x_{1}^{\prime}, x_{2}^{\prime}, 0,0, \ldots\right)$ is the point of $\pi\left(p_{0}, p_{1}, q\right)$ nearest to x. $\|x-H\|^{2}=\sum_{i=3}^{\infty}\left(x_{i}^{\prime}\right)^{2} \leq r^{2}$, as norms are independent of the choice of orthonormal bases. Thus, H is interior to S. We now establish a lemma.

Lemma 1. $\pi\left(p_{0}, p_{1}, q\right) \cap S$ is a circle in $\pi\left(p_{0}, p_{1}, q\right)$ with center H.
Proof. The sphere S is the set of points $s=\left\{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, \ldots\right\}$ such that $\sum_{i=1}^{\infty}\left(s_{i}^{\prime}-x_{i}^{\prime}\right)^{2}=r^{2}$. The plane $\pi\left(p_{0}, p_{1}, q\right)$ is the set of points
$s=\left\{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, \ldots\right\}$ such that if $i \geq 3, s_{i}^{\prime}=0$. Thus, $\pi\left(p_{0}, p_{1}, q\right) \cap S$ is the set of points $s=\left\{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, \ldots\right\}$ such that

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(s_{i}^{\prime}-x_{i}^{\prime}\right)^{2} & =\sum_{i=1}^{2}\left(s_{i}^{\prime}-x_{i}^{\prime}\right)^{2}+\sum_{i=3}^{\infty}\left(s_{i}^{\prime}-x_{i}^{\prime}\right)^{2} \\
& =\sum_{i=1}^{2}\left(s_{i}^{\prime}-x_{i}^{\prime}\right)^{2}+\sum_{i=3}^{\infty}\left(x_{i}^{\prime}\right)^{2}=r^{2} .
\end{aligned}
$$

The last equation above is the equation of the circle in $\pi\left(p_{0}, p_{1}, q\right)$ with center H and radius $\sqrt{r^{2}-\sum_{i=3}^{\infty}\left(x_{i}^{\prime}\right)^{2}}$.

We shall refer to that circle as C. By construction p_{0} and p_{1} are points of the circle. Moreover $C \subset X_{c}$ as $C \subset \pi\left(p_{0}, p_{1}, q\right)$. Thus, $C \cap S \subset X_{c} \cap S$. As C is a circle, there are two arcs, which are necessarily path connected, in C connecting p_{0} and p_{1}. Given any two points α and β of S and $\epsilon>0, p_{0}$ $\in X_{c} \cap S$ and $p_{1} \in X_{c} \cap S$ may be chosen such that p_{0} is within ϵ of α and p_{1} is within ϵ of β. That is, there is a path-connected $C \in\left\{C_{c}\right\}_{c \in \mathbb{R}}$ within ϵ each point of S, showing that $\left\{C_{c}\right\}_{c \in \mathbb{R}}$ is a collection of mutually disjoint path-connected dense subsets of S. Thus, we have the following lemma.

Lemma 2. $\left\{C_{c}\right\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint path-connected subsets of S, each of which is dense in S.

3. Simple Connectedness of C_{c} For $c \in \mathbb{R}$

The set-up for our work of simple connectedness is illustrated by Figure 1. To prove Simple Connectedness for the members of C_{c}, we shall show that any arc between p_{0} and p_{1} produced in the manner indicated in the prior section can be continuously transformed into any other arc between p_{0} and p_{1} which was also produced in that manner. Let q_{0} be the point which determined the plane used to construct one such circle and let q_{1} be the point which determined the plane used to construct the other circle. Adopting the convention that $a * b * c$ means that a, b, and c are collinear and b is between a and c, let q_{2} such that $H * \frac{\left(p_{0}+p_{1}\right)}{2} * q_{2}$ and $q_{2} \notin \overleftrightarrow{q_{0} q_{1}}$. As H and $\frac{\left(p_{0}+p_{1}\right)}{2}$ are points of $X_{c}, q_{2} \in X_{c}$. Let $q(t)$ be defined as follows.

$$
q(t) \stackrel{\text { def }}{=} \begin{cases}q_{0}+2 t\left(q_{2}-q_{0}\right) & \text { if } 0 \leq t \leq \frac{1}{2}, \\ q_{2}+(2 t-1)\left(q_{1}-q_{2}\right) & \text { if } \frac{1}{2}<t \leq 1\end{cases}
$$

Note that this path was chosen to avoid the possibility of there being a number t in $(0,1)$ such that $q(t)$ is a point of the line between p_{0} and p_{1} and of $\overleftarrow{q_{0} q_{1}}$. The former restriction assures that $q(t)$ may produce a plane

Figure 1. The set-up for the section on simple connectedness.
$\pi\left(p_{0}, p_{1}, q(t)\right)$ and the latter restriction assures that the points $q(t)$ lie in a plane. By convexity, $q(t) \in X_{c}$ for all t.

Let Q denote the plane determined by $\overleftrightarrow{q_{0} q_{2}}$ and $\overleftrightarrow{q_{2} q_{1}}$. By construction, Q intersects $\overleftrightarrow{p_{0} p_{1}}$, but $\overleftrightarrow{p_{0} p_{1}}$ is not contained in Q. Thus, we may consider the following arguments in three dimensional space. We shall use $\widehat{p_{0} p_{1}}$ as a hinge, about which planes may be produced from the three non-collinear points p_{0}, p_{1}, and $q(t)$. Let $P(t)$ denote the plane determined by p_{0}, p_{1}, and $q(t)$.

As the points of a circle C are developed continuously from its center H, H is developed from a plane by using continuous vectors and norms, planes $P(t)$ are developed continuously by pivoting points $q(t)$ around the line containing p_{0} and p_{1}, and the points $q(t)$ are developed continuously from q_{0} and q_{1}. It follows that the circles C are the image of a continuous function $C(t)$ of $[0,1]$ such that $C(0)$ is the first circle and $C(1)$ the second circle. Thus, we have the following lemma.

Lemma 3. $\left\{C_{c}\right\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint simply-connected subsets of S, each of which is dense in S.

4. Contractibility of C_{c} For $c \in \mathbb{R}$

The set-up for our work on contractibility is illustrated by Figure 2.

Figure 2. The set-up for the section on contractibility.

We will refer to a prior result holding that if $p_{0}, p_{1} \in X_{c} \cap S$, then there is a point $x=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ in a plane $P \subset X_{c}$ such that the intersection of P with S is a circle C with center $x=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ containing p_{0} and p_{1}.

Let z be any point of $X_{c} \cap S$, which is not a point of the circle C. We will find the angles between the rays connecting the center of the circle C with the points of the circle C and the fixed ray connecting the center x to z. As the function which denotes the angles is continuous on a closed interval, it assumes a maximum value. Then we will use that maximum angle to aid contraction. The true position of the contraction will be closer to z than the contraction under the generous estimate of the angle. That is, we will use a process similar to the Sandwich (or Squeeze) Theorem.

Part I: Let C be the circle in $X_{c} \cap S$ which contains two paths connecting p_{0} and p_{1}. Parameterize the points p of C, by $p(u), u$ in $[0,1]$. Let $\theta(u)=$
$\arccos \left(\frac{\langle p(u)-x, z-x\rangle}{\|p(u)-x\|\|z-x\|}\right)$. As the denominator is positive and constant, $\theta(u)$ has a max on $[0,1]$. Let $\theta \stackrel{\text { def }}{=} \max \{\theta(u)\}, u \in[0,1]$.

Part II: For u in $[0,1], \theta \geq \theta(u)>0$. Thus, if t in $[0,1),(1-t) \theta \geq$ $(1-t) \theta(u)>0$. Let p be a point of C. The plane Π containing p, x, and z is a subset of X_{c} as all three points are points of X_{c} and X_{c} is affine. An argument in the section above concerning path connectedness assures that $\Pi \cap S$ is a circle. Thus, the point set connecting p with z in Π is an arc of a circle and also a subset of $X_{c} \cap S$. As the curve is an arc of a circle, any ray whose initial point is interior to S intersects S only once. Thus, there is a unique point $p(t)$ on the curve such that the angle between the vectors $p(t)-x$ and $z-x$ is $(1-t) \theta$.

In like manner, there is a unique point $p(u, t)$ on the curve such that the angle between the vectors $p(u, t)-x$ and $z-x$ is $(1-t) \theta(u)$. It follows that $p(u, t)$ is between $p(t)$ and z on the arc. Thus, contracting $p(t)$ to z will contract $p(u, t)$ to z.

Part III: S has radius r. Any circle on S has radius $\leq r$. Thus, the arc length $L(t)$ on S between $p(t)$ and z is less than $(1-t) \theta r$. Or, $L(t) \leq$ $(1-t) \theta r$. Then $\lim _{t \rightarrow 1^{-}} L(t)=\lim _{t \rightarrow 1^{-}}(1-t) \theta r=0$. As $\|p(t)-z\| \leq$ the arc length between $p(t)$ and z, it follows $\lim _{t \rightarrow 1^{-}}\|p(t)-z\|=0$. Then the remark near the end of Part II proves contractibility. That is, C_{c} is contractible. Thus we have the following lemma.

Lemma 4. $\left\{C_{c}\right\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint contractible subsets of S, each of which is dense in S.

We will now show that if $C \in C_{c}, C$ is Frechet differentiable.
Lemma 5. For $c \in \mathbb{R}$, each path in C_{c} is Frechet Differentiable.
Proof. Gamelin and Greene [2, p. 47] offers a definition of Frechet Differentiability in Banach spaces and hence in ℓ^{2}. For convenience, we shall refer to the expression $x-x_{0}$ on that page as h. By construction, each path C in C_{c} is a circle. Utilizing a process carried out earlier, we may construct an orthonormal basis with origin at the center of C and whose first two members are contained in the plane containing C. In that system $x \in C$ implies $\|x\|=r$ or $G(x)=\langle x, x\rangle=r^{2}$. ℓ^{2} is the open subset of ℓ^{2} required by the definition. Thus,

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{G(x)-G(x-h)-T(h)}{\|h\|} \tag{1}\\
= & \lim _{h \rightarrow 0} \frac{\langle x, x\rangle-[\langle x, x\rangle-2\langle x, h\rangle+\langle h, h\rangle]-T(h)}{\|h\|} .
\end{align*}
$$

Setting $T(h)$ to $2\langle x, h\rangle$, expression (1) becomes

$$
\lim _{h \rightarrow 0} \frac{-\langle h, h\rangle}{\|h\|}=\lim _{h \rightarrow 0} \frac{-\|h\|^{2}}{\|h\|}=0 .
$$

Thus, C is a Frechet differentiable path and its derivative is $2\langle x, h\rangle$. Finally, we have the following theorem.

Theorem 1. $\left\{C_{c}\right\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint, simply connected, Frechet differentiable and contractible subsets of S, each of which is dense in S.

References

[1] S. H. Creswell, Uncountably many mutually disjoint, dense and convex subsets of ℓ^{2} with applications to path connected subsets of spheres, Missouri Journal of Mathematical Sciences, 21 (2009), 163-174.
[2] T. W. Gamelin and R. E. Greene, Introduction to Topology, Saunders College Publishing, New York, 1983.
[3] N. Young, An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1988.

AMS Classification Numbers: 46B20, 46C05
Mathematics Department, San Antonio College, San Antonio, Texas 782124299

E-mail address: screswell@alamo.edu

