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Abstract. Each sphere in ℓ
2 contains uncountably many mutually

disjoint, simply connected, Frechet differentiable and contractible
subsets, each of which is dense in the sphere.

1. Introduction

This paper is a sequel to the author’s work in [1]. Accordingly, we
shall summarize the parts of the prior paper which are satisfactory for our
purposes.

Definition 1. For c ∈ R, define Xc to be the set of all real-valued sequences

x = (xi) ∈ ℓ1 such that
∑

xi = c.

Definition 2. The sphere with center x and radius r is

Sx,r
def
=

{

y ∈ ℓ2 | ‖x− y‖ = r
}

.

In [1] it was shown that if c ∈ R,Xc is dense in ℓ2 and is an affine subspace
of ℓ2. Thus, {Xc}c∈R is a collection of uncountably many mutually disjoint
affine subsets of ℓ2, each of which is dense in ℓ2.

Furthermore, if c ∈ R and S = Sx,r for an x ∈ ℓ2 and r > 0 is a sphere
in ℓ2, Xc is dense in S. With these preliminaries, it was shown that any
sphere S in ℓ2 contains uncountably many mutually disjoint path-connected
subsets, each of which is dense in S.

In this paper, we shall not use the constructions provided in [1]. The
strengthened results provided here are consequences of constructing subsets
of Xc

⋂

S which are more amenable to analysis than the corresponding
constructions in [1].

[3] is a contemporary source of information about Hilbert spaces.
We should emphasize what we are not trying to accomplish in this and

subsequent sections. We are not attempting to show that Xc

⋂

S is simply
connected and contractible, while being dense in S. Rather, we will show
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that there is a subset Cc, to be defined below, of Xc

⋂

S which is simply
connected and contractible, while being dense in S. As Cc ⊂ Xc

⋂

S ⊂ Xc,
it follows that if c 6= d, then Cc and Cd are disjoint as they are subsets of
the disjoint sets Xc and Xd, respectively.

2. Path Connectedness of Cc for c ∈ R

Definition 3.

π(p0, p1, q)
def.
= the plane containing p0, p1 and q such that p0, p1 ∈ Xc ∩ S,

q ∈ Xc, q /∈ ←−→p0p1.

As p0, p1, and q are points of Xc and Xc is affine, π(p0, p1, q) ⊂ Xc.

Definition 4.

{Cc}c∈R

def.
= {S ∩ π(p0, p1, q) | p0, p1 ∈ Xc ∩ S

q ∈ Xc, q /∈ ←−→p0p1}.

Let the sphere S in ℓ2 have center x = (x1, x2, x3, . . .) and radius r. Let
p0, p1 ∈ Xc ∩S and q ∈ Xc such that q is not on the line containing p0 and
p1. Let π(p0, p1, q) denote the plane containing p0, p1, and q. We may create
a new orthonormal basis {e′1, e

′
2, e

′
3, . . .} by letting e′1 be p1−p0

‖p1−p0‖
, letting e′2

be a normalized vector in π(p0, p1, q) which is perpendicular to e′1 at p0,
and for i ≥ 3, constructing e′i by the Gram-Schmidt Orthonormalization
process.

Note that p0 = (0, 0, . . .), x = (x′
1, x

′
2, x

′
3, . . .), and a point y is in

π(p0, p1, q) if and only if for i ≥ 3, y′i = 0. Let H = (x′
1, x

′
2, 0, 0, . . .).

Define u, v, and w by:

u = x−H = (0, 0, x′
3, x

′
4, . . .),

v = p0 −H = (−x′
1,−x

′
2, 0, 0, . . .), and

w = p1 −H = (p′11 − x′
1, p

′
12 − x′

2, 0, 0, . . .).

Thus, 〈u,w〉 = 〈u, v〉 = 0 andH = (x′
1, x

′
2, 0, 0, . . .) is the point of π(p0, p1, q)

nearest to x. ‖x−H‖
2
=

∞
∑

i=3

(x′
i)

2 ≤ r2, as norms are independent of the

choice of orthonormal bases. Thus, H is interior to S. We now establish a
lemma.

Lemma 1. π(p0, p1, q) ∩ S is a circle in π(p0, p1, q) with center H.

Proof. The sphere S is the set of points s = {s′1, s
′
2, s

′
3, . . .} such that

∞
∑

i=1

(s′i − x′
i)

2 = r2. The plane π(p0, p1, q) is the set of points
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s = {s′1, s
′
2, s

′
3, . . .} such that if i ≥ 3, s′i = 0. Thus, π(p0, p1, q) ∩ S is the

set of points s = {s′1, s
′
2, s

′
3, . . .} such that

∞
∑

i=1

(s′i − x′
i)

2 =

2
∑

i=1

(s′i − x′
i)

2 +

∞
∑

i=3

(s′i − x′
i)

2

=

2
∑

i=1

(s′i − x′
i)

2 +

∞
∑

i=3

(x′
i)

2 = r2.

The last equation above is the equation of the circle in π(p0, p1, q) with

center H and radius

√

r2 −
∞
∑

i=3

(x′
i)

2. �

We shall refer to that circle as C. By construction p0 and p1 are points
of the circle. Moreover C ⊂ Xc as C ⊂ π(p0, p1, q). Thus, C ∩ S ⊂ Xc ∩ S.
As C is a circle, there are two arcs, which are necessarily path connected,
in C connecting p0 and p1. Given any two points α and β of S and ǫ > 0, p0
∈ Xc ∩ S and p1 ∈ Xc ∩ S may be chosen such that p0 is within ǫ of α and
p1 is within ǫ of β. That is, there is a path-connected C ∈ {Cc}c∈R within
ǫ each point of S, showing that {Cc}c∈R is a collection of mutually disjoint
path-connected dense subsets of S. Thus, we have the following lemma.

Lemma 2. {Cc}c∈R is a collection of uncountably many mutually disjoint

path-connected subsets of S, each of which is dense in S.

3. Simple Connectedness of Cc for c ∈ R

The set-up for our work of simple connectedness is illustrated by Figure
1. To prove Simple Connectedness for the members of Cc, we shall show
that any arc between p0 and p1 produced in the manner indicated in the
prior section can be continuously transformed into any other arc between
p0 and p1 which was also produced in that manner. Let q0 be the point
which determined the plane used to construct one such circle and let q1 be
the point which determined the plane used to construct the other circle.
Adopting the convention that a ∗ b ∗ c means that a, b, and c are collinear

and b is between a and c, let q2 such that H ∗ (p0+p1)
2 ∗ q2 and q2 /∈ ←−→q0q1.

As H and (p0+p1)
2 are points of Xc, q2 ∈ Xc. Let q(t) be defined as follows.

q(t)
def
=

{

q0 + 2t (q2 − q0) if 0 ≤ t ≤ 1
2 ,

q2 + (2t− 1) (q1 − q2) if 1
2 < t ≤ 1.

Note that this path was chosen to avoid the possibility of there being a
number t in (0, 1) such that q(t) is a point of the line between p0 and p1
and of ←−→q0q1. The former restriction assures that q(t) may produce a plane
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Figure 1. The set-up for the section on simple connectedness.

π(p0, p1, q(t)) and the latter restriction assures that the points q(t) lie in a
plane. By convexity, q(t) ∈ Xc for all t.

Let Q denote the plane determined by ←−→q0q2 and ←−→q2q1. By construction,
Q intersects ←−→p0p1, but

←−→p0p1 is not contained in Q. Thus, we may consider
the following arguments in three dimensional space. We shall use ←−→p0p1 as
a hinge, about which planes may be produced from the three non-collinear
points p0, p1, and q(t). Let P (t) denote the plane determined by p0, p1,
and q(t).

As the points of a circle C are developed continuously from its center
H , H is developed from a plane by using continuous vectors and norms,
planes P (t) are developed continuously by pivoting points q(t) around the
line containing p0 and p1, and the points q(t) are developed continuously
from q0 and q1. It follows that the circles C are the image of a continuous
function C(t) of [0, 1] such that C(0) is the first circle and C(1) the second
circle. Thus, we have the following lemma.

Lemma 3. {Cc}c∈R is a collection of uncountably many mutually disjoint

simply-connected subsets of S, each of which is dense in S.

4. Contractibility of Cc for c ∈ R

The set-up for our work on contractibility is illustrated by Figure 2.
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Figure 2. The set-up for the section on contractibility.

We will refer to a prior result holding that if p0, p1 ∈ Xc ∩ S, then there
is a point x = (x′

1, x
′
2) in a plane P ⊂ Xc such that the intersection of P

with S is a circle C with center x = (x′
1, x

′
2) containing p0 and p1.

Let z be any point of Xc ∩ S, which is not a point of the circle C. We
will find the angles between the rays connecting the center of the circle C
with the points of the circle C and the fixed ray connecting the center x
to z. As the function which denotes the angles is continuous on a closed
interval, it assumes a maximum value. Then we will use that maximum
angle to aid contraction. The true position of the contraction will be closer
to z than the contraction under the generous estimate of the angle. That
is, we will use a process similar to the Sandwich (or Squeeze) Theorem.

Part I: Let C be the circle in Xc∩S which contains two paths connecting
p0 and p1. Parameterize the points p of C, by p(u), u in [0, 1]. Let θ(u) =

FEBRUARY 2010 7



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

arccos
(

<p(u)−x,z−x>

‖p(u)−x‖‖z−x‖

)

. As the denominator is positive and constant, θ(u)

has a max on [0, 1]. Let θ
def
= max {θ(u)} , u ∈ [0, 1].

Part II: For u in [0, 1], θ ≥ θ(u) > 0. Thus, if t in [0, 1), (1− t)θ ≥
(1− t)θ(u) > 0. Let p be a point of C. The plane Π containing p, x, and z
is a subset of Xc as all three points are points of Xc and Xc is affine. An
argument in the section above concerning path connectedness assures that
Π ∩ S is a circle. Thus, the point set connecting p with z in Π is an arc of
a circle and also a subset of Xc ∩ S. As the curve is an arc of a circle, any
ray whose initial point is interior to S intersects S only once. Thus, there
is a unique point p(t) on the curve such that the angle between the vectors
p(t)− x and z − x is (1 − t)θ.

In like manner, there is a unique point p(u, t) on the curve such that the
angle between the vectors p(u, t) − x and z − x is (1 − t)θ(u). It follows
that p(u, t) is between p(t) and z on the arc. Thus, contracting p(t) to z
will contract p(u, t) to z.

Part III: S has radius r. Any circle on S has radius ≤ r. Thus, the
arc length L(t) on S between p(t) and z is less than (1 − t)θr. Or, L(t) ≤
(1 − t)θr. Then lim

t→1−
L(t) = lim

t→1−
(1 − t)θr = 0. As ‖p(t)− z‖ ≤ the arc

length between p(t) and z, it follows lim
t→1−

‖p(t)− z‖ = 0. Then the remark

near the end of Part II proves contractibility. That is, Cc is contractible.
Thus we have the following lemma.

Lemma 4. {Cc}c∈R is a collection of uncountably many mutually disjoint

contractible subsets of S, each of which is dense in S.

We will now show that if C ∈ Cc, C is Frechet differentiable.

Lemma 5. For c ∈ R, each path in Cc is Frechet Differentiable.

Proof. Gamelin and Greene [2, p. 47] offers a definition of Frechet Differen-
tiability in Banach spaces and hence in ℓ2. For convenience, we shall refer
to the expression x − x0 on that page as h. By construction, each path C
in Cc is a circle. Utilizing a process carried out earlier, we may construct
an orthonormal basis with origin at the center of C and whose first two
members are contained in the plane containing C. In that system x ∈ C
implies ‖x‖ = r or G(x) = 〈x, x〉 = r2. ℓ2 is the open subset of ℓ2 required
by the definition. Thus,

lim
h→0

G(x) −G(x− h)− T (h)

‖h‖
(1)

= lim
h→0

〈x, x〉 − [〈x, x〉 − 2〈x, h〉+ 〈h, h〉]− T (h)

‖h‖
.

Setting T (h) to 2〈x, h〉, expression (1) becomes
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lim
h→0

−〈h, h〉

‖h‖
= lim

h→0

−‖h‖2

‖h‖
= 0.

�

Thus, C is a Frechet differentiable path and its derivative is 2〈x, h〉.
Finally, we have the following theorem.

Theorem 1. {Cc}c∈R
is a collection of uncountably many mutually dis-

joint, simply connected, Frechet differentiable and contractible subsets of S,
each of which is dense in S.
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