UNCOUNTABLY MANY MUTUALLY DISJOINT, SIMPLY CONNECTED, CONTRACTIBLE AND FRECHET DIFFERENTIABLE SUBSETS OF THE SPHERE IN ℓ^2 , EACH OF WHICH IS DENSE IN THE SPHERE

SAM H. CRESWELL

ABSTRACT. Each sphere in ℓ^2 contains uncountably many mutually disjoint, simply connected, Frechet differentiable and contractible subsets, each of which is dense in the sphere.

1. INTRODUCTION

This paper is a sequel to the author's work in [1]. Accordingly, we shall summarize the parts of the prior paper which are satisfactory for our purposes.

Definition 1. For $c \in \mathbb{R}$, define X_c to be the set of all real-valued sequences $x = (x_i) \in \ell^1$ such that $\sum x_i = c$.

Definition 2. The sphere with center x and radius r is

$$S_{x,r} \stackrel{def}{=} \{ y \in \ell^2 \mid ||x - y|| = r \}.$$

In [1] it was shown that if $c \in \mathbb{R}$, X_c is dense in ℓ^2 and is an affine subspace of ℓ^2 . Thus, $\{X_c\}_{c\in\mathbb{R}}$ is a collection of uncountably many mutually disjoint affine subsets of ℓ^2 , each of which is dense in ℓ^2 .

Furthermore, if $c \in \mathbb{R}$ and $S = S_{x,r}$ for an $x \in \ell^2$ and r > 0 is a sphere in ℓ^2 , X_c is dense in S. With these preliminaries, it was shown that any sphere S in ℓ^2 contains uncountably many mutually disjoint path-connected subsets, each of which is dense in S.

In this paper, we shall not use the constructions provided in [1]. The strengthened results provided here are consequences of constructing subsets of $X_c \cap S$ which are more amenable to analysis than the corresponding constructions in [1].

[3] is a contemporary source of information about Hilbert spaces.

We should emphasize what we are not trying to accomplish in this and subsequent sections. We are not attempting to show that $X_c \bigcap S$ is simply connected and contractible, while being dense in S. Rather, we will show

FEBRUARY 2010

that there is a subset C_c , to be defined below, of $X_c \cap S$ which is simply connected and contractible, while being dense in S. As $C_c \subset X_c \cap S \subset X_c$, it follows that if $c \neq d$, then C_c and C_d are disjoint as they are subsets of the disjoint sets X_c and X_d , respectively.

2. Path Connectedness of C_c for $c \in \mathbb{R}$

Definition 3.

 $\pi(p_0, p_1, q) \stackrel{\text{def.}}{=} \text{the plane containing } p_0, p_1 \text{ and } q \text{ such that } p_0, p_1 \in X_c \cap S,$ $q \in X_c, q \notin \overleftarrow{p_0 p_1}.$

As p_0, p_1 , and q are points of X_c and X_c is affine, $\pi(p_0, p_1, q) \subset X_c$.

Definition 4.

$$\{C_c\}_{c\in\mathbb{R}} \stackrel{def.}{=} \{S \cap \pi(p_0, p_1, q) \mid p_0, p_1 \in X_c \cap S \\ q \in X_c, q \notin p_0 p_1\}.$$

Let the sphere S in ℓ^2 have center $x = (x_1, x_2, x_3, \ldots)$ and radius r. Let $p_0, p_1 \in X_c \cap S$ and $q \in X_c$ such that q is not on the line containing p_0 and p_1 . Let $\pi(p_0, p_1, q)$ denote the plane containing p_0, p_1 , and q. We may create a new orthonormal basis $\{e'_1, e'_2, e'_3, \ldots\}$ by letting e'_1 be $\frac{p_1 - p_0}{\|p_1 - p_0\|}$, letting e'_2 be a normalized vector in $\pi(p_0, p_1, q)$ which is perpendicular to e'_1 at p_0 , and for $i \geq 3$, constructing e'_i by the Gram-Schmidt Orthonormalization process.

Note that $p_0 = (0, 0, ...)$, $x = (x'_1, x'_2, x'_3, ...)$, and a point y is in $\pi(p_0, p_1, q)$ if and only if for $i \ge 3$, $y'_i = 0$. Let $H = (x'_1, x'_2, 0, 0, ...)$. Define u, v, and w by:

$$u = x - H = (0, 0, x'_3, x'_4, \ldots),$$

$$v = p_0 - H = (-x'_1, -x'_2, 0, 0, \ldots), \text{ and }$$

$$w = p_1 - H = (p'_{1_1} - x'_1, p'_{1_2} - x'_2, 0, 0, \ldots).$$

Thus, $\langle u, w \rangle = \langle u, v \rangle = 0$ and $H = (x'_1, x'_2, 0, 0, ...)$ is the point of $\pi(p_0, p_1, q)$ nearest to x. $||x - H||^2 = \sum_{i=3}^{\infty} (x'_i)^2 \leq r^2$, as norms are independent of the choice of orthonormal bases. Thus, H is interior to S. We now establish a lemma.

Lemma 1. $\pi(p_0, p_1, q) \cap S$ is a circle in $\pi(p_0, p_1, q)$ with center H. *Proof.* The sphere S is the set of points $s = \{s'_1, s'_2, s'_3, \ldots\}$ such that $\sum_{i=1}^{\infty} (s'_i - x'_i)^2 = r^2$. The plane $\pi(p_0, p_1, q)$ is the set of points

VOLUME 22, NUMBER 1

 $s = \{s'_1, s'_2, s'_3, \ldots\}$ such that if $i \ge 3$, $s'_i = 0$. Thus, $\pi(p_0, p_1, q) \cap S$ is the set of points $s = \{s'_1, s'_2, s'_3, \ldots\}$ such that

$$\sum_{i=1}^{\infty} (s'_i - x'_i)^2 = \sum_{i=1}^{2} (s'_i - x'_i)^2 + \sum_{i=3}^{\infty} (s'_i - x'_i)^2$$
$$= \sum_{i=1}^{2} (s'_i - x'_i)^2 + \sum_{i=3}^{\infty} (x'_i)^2 = r^2.$$

The last equation above is the equation of the circle in $\pi(p_0, p_1, q)$ with center H and radius $\sqrt{r^2 - \sum_{i=3}^{\infty} (x'_i)^2}$.

We shall refer to that circle as C. By construction p_0 and p_1 are points of the circle. Moreover $C \subset X_c$ as $C \subset \pi(p_0, p_1, q)$. Thus, $C \cap S \subset X_c \cap S$. As C is a circle, there are two arcs, which are necessarily path connected, in C connecting p_0 and p_1 . Given any two points α and β of S and $\epsilon > 0$, $p_0 \in X_c \cap S$ and $p_1 \in X_c \cap S$ may be chosen such that p_0 is within ϵ of α and p_1 is within ϵ of β . That is, there is a path-connected $C \in \{C_c\}_{c \in \mathbb{R}}$ within ϵ each point of S, showing that $\{C_c\}_{c \in \mathbb{R}}$ is a collection of mutually disjoint path-connected dense subsets of S. Thus, we have the following lemma.

Lemma 2. $\{C_c\}_{c\in\mathbb{R}}$ is a collection of uncountably many mutually disjoint path-connected subsets of S, each of which is dense in S.

3. Simple Connectedness of C_c for $c \in \mathbb{R}$

The set-up for our work of simple connectedness is illustrated by Figure 1. To prove Simple Connectedness for the members of C_c , we shall show that any arc between p_0 and p_1 produced in the manner indicated in the prior section can be continuously transformed into any other arc between p_0 and p_1 which was also produced in that manner. Let q_0 be the point which determined the plane used to construct one such circle and let q_1 be the point which determined the plane used to construct the other circle. Adopting the convention that a * b * c means that a, b, and c are collinear and b is between a and c, let q_2 such that $H * \frac{(p_0+p_1)}{2} * q_2$ and $q_2 \notin \dot{q_0}\dot{q_1}$. As H and $\frac{(p_0+p_1)}{2}$ are points of $X_c, q_2 \in X_c$. Let q(t) be defined as follows.

$$q(t) \stackrel{\text{def}}{=} \begin{cases} q_0 + 2t (q_2 - q_0) & \text{if } 0 \le t \le \frac{1}{2}, \\ q_2 + (2t - 1) (q_1 - q_2) & \text{if } \frac{1}{2} < t \le 1. \end{cases}$$

Note that this path was chosen to avoid the possibility of there being a number t in (0,1) such that q(t) is a point of the line between p_0 and p_1 and of $\overleftarrow{q_0q_1}$. The former restriction assures that q(t) may produce a plane

FEBRUARY 2010

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

FIGURE 1. The set-up for the section on simple connectedness.

 $\pi(p_0, p_1, q(t))$ and the latter restriction assures that the points q(t) lie in a plane. By convexity, $q(t) \in X_c$ for all t.

Let Q denote the plane determined by $\overleftarrow{q_0 q_2}$ and $\overleftarrow{q_2 q_1}$. By construction, Q intersects $\overleftarrow{p_0 p_1}$, but $\overleftarrow{p_0 p_1}$ is not contained in Q. Thus, we may consider the following arguments in three dimensional space. We shall use $\overleftarrow{p_0 p_1}$ as a hinge, about which planes may be produced from the three non-collinear points p_0 , p_1 , and q(t). Let P(t) denote the plane determined by p_0, p_1 , and q(t).

As the points of a circle C are developed continuously from its center H, H is developed from a plane by using continuous vectors and norms, planes P(t) are developed continuously by pivoting points q(t) around the line containing p_0 and p_1 , and the points q(t) are developed continuously from q_0 and q_1 . It follows that the circles C are the image of a continuous function C(t) of [0, 1] such that C(0) is the first circle and C(1) the second circle. Thus, we have the following lemma.

Lemma 3. $\{C_c\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint simply-connected subsets of S, each of which is dense in S.

4. Contractibility of C_c for $c \in \mathbb{R}$

The set-up for our work on contractibility is illustrated by Figure 2.

VOLUME 22, NUMBER 1

FIGURE 2. The set-up for the section on contractibility.

We will refer to a prior result holding that if $p_0, p_1 \in X_c \cap S$, then there is a point $x = (x'_1, x'_2)$ in a plane $P \subset X_c$ such that the intersection of Pwith S is a circle C with center $x = (x'_1, x'_2)$ containing p_0 and p_1 .

Let z be any point of $X_c \cap S$, which is not a point of the circle C. We will find the angles between the rays connecting the center of the circle C with the points of the circle C and the fixed ray connecting the center x to z. As the function which denotes the angles is continuous on a closed interval, it assumes a maximum value. Then we will use that maximum angle to aid contraction. The true position of the contraction will be closer to z than the contraction under the generous estimate of the angle. That is, we will use a process similar to the Sandwich (or Squeeze) Theorem.

Part I: Let C be the circle in $X_c \cap S$ which contains two paths connecting p_0 and p_1 . Parameterize the points p of C, by p(u), u in [0, 1]. Let $\theta(u) =$

FEBRUARY 2010

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

 $\arccos\left(\frac{\langle p(u)-x,z-x\rangle}{\|p(u)-x\|\|\|z-x\|}\right)$. As the denominator is positive and constant, $\theta(u)$

has a max on [0, 1]. Let $\theta \stackrel{def}{=} \max \{\theta(u)\}, u \in [0, 1].$

Part II: For u in [0,1], $\theta \ge \theta(u) > 0$. Thus, if t in [0,1), $(1-t)\theta \ge (1-t)\theta(u) > 0$. Let p be a point of C. The plane Π containing p, x, and z is a subset of X_c as all three points are points of X_c and X_c is affine. An argument in the section above concerning path connectedness assures that $\Pi \cap S$ is a circle. Thus, the point set connecting p with z in Π is an arc of a circle and also a subset of $X_c \cap S$. As the curve is an arc of a circle, any ray whose initial point is interior to S intersects S only once. Thus, there is a unique point p(t) on the curve such that the angle between the vectors p(t) - x and z - x is $(1-t)\theta$.

In like manner, there is a unique point p(u, t) on the curve such that the angle between the vectors p(u,t) - x and z - x is $(1-t)\theta(u)$. It follows that p(u,t) is between p(t) and z on the arc. Thus, contracting p(t) to z will contract p(u,t) to z.

Part III: S has radius r. Any circle on S has radius $\leq r$. Thus, the arc length L(t) on S between p(t) and z is less than $(1-t)\theta r$. Or, $L(t) \leq (1-t)\theta r$. Then $\lim_{t\to 1^-} L(t) = \lim_{t\to 1^-} (1-t)\theta r = 0$. As $||p(t) - z|| \leq$ the arc length between p(t) and z, it follows $\lim_{t\to 1^-} ||p(t) - z|| = 0$. Then the remark near the end of Part II proves contractibility. That is, C_c is contractible. Thus we have the following lemma.

Lemma 4. $\{C_c\}_{c\in\mathbb{R}}$ is a collection of uncountably many mutually disjoint contractible subsets of S, each of which is dense in S.

We will now show that if $C \in C_c$, C is Frechet differentiable.

Lemma 5. For $c \in \mathbb{R}$, each path in C_c is Frechet Differentiable.

Proof. Gamelin and Greene [2, p. 47] offers a definition of Frechet Differentiability in Banach spaces and hence in ℓ^2 . For convenience, we shall refer to the expression $x - x_0$ on that page as h. By construction, each path Cin C_c is a circle. Utilizing a process carried out earlier, we may construct an orthonormal basis with origin at the center of C and whose first two members are contained in the plane containing C. In that system $x \in C$ implies ||x|| = r or $G(x) = \langle x, x \rangle = r^2$. ℓ^2 is the open subset of ℓ^2 required by the definition. Thus,

$$\lim_{h \to 0} \frac{G(x) - G(x - h) - T(h)}{\|h\|}$$
(1)
=
$$\lim_{h \to 0} \frac{\langle x, x \rangle - [\langle x, x \rangle - 2\langle x, h \rangle + \langle h, h \rangle] - T(h)}{\|h\|}.$$

Setting T(h) to $2\langle x, h \rangle$, expression (1) becomes

=

VOLUME 22, NUMBER 1

$$\lim_{h \to 0} \frac{-\langle h, h \rangle}{\|h\|} = \lim_{h \to 0} \frac{-\|h\|^2}{\|h\|} = 0.$$

Thus, C is a Frechet differentiable path and its derivative is $2\langle x, h \rangle$. Finally, we have the following theorem.

Theorem 1. $\{C_c\}_{c \in \mathbb{R}}$ is a collection of uncountably many mutually disjoint, simply connected, Frechet differentiable and contractible subsets of S, each of which is dense in S.

References

- S. H. Creswell, Uncountably many mutually disjoint, dense and convex subsets of l² with applications to path connected subsets of spheres, Missouri Journal of Mathematical Sciences, 21 (2009), 163–174.
- [2] T. W. Gamelin and R. E. Greene, *Introduction to Topology*, Saunders College Publishing, New York, 1983.
- [3] N. Young, An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1988.

AMS Classification Numbers: 46B20, 46C05

Mathematics Department, San Antonio College, San Antonio, Texas 78212-4299

E-mail address: screswell@alamo.edu

FEBRUARY 2010