UNCOUNTABLY MANY MUTUALLY DISJOINT, SIMPLY
CONNECTED, CONTRACTIBLE AND FRECHET
DIFFERENTIABLE SUBSETS OF THE SPHERE IN /2,
EACH OF WHICH IS DENSE IN THE SPHERE

SAM H. CRESWELL

ABSTRACT. Each sphere in ¢2 contains uncountably many mutually
disjoint, simply connected, Frechet differentiable and contractible
subsets, each of which is dense in the sphere.

1. INTRODUCTION

This paper is a sequel to the author’s work in [1]. Accordingly, we
shall summarize the parts of the prior paper which are satisfactory for our
purposes.

Definition 1. Forc € R, define X, to be the set of all real-valued sequences
x = (z;) € 0* such that Y z; = c.

Definition 2. The sphere with center x and radius r is
Ser Dy e —yll =1}

In [1] it was shown that if ¢ € R, X is dense in £2 and is an affine subspace
of £2. Thus, {X.}cer is a collection of uncountably many mutually disjoint
affine subsets of £2, each of which is dense in £2.

Furthermore, if c € R and S = S, for an z € ¢2 and r > 0 is a sphere
in /2, X, is dense in S. With these preliminaries, it was shown that any
sphere S in £? contains uncountably many mutually disjoint path-connected
subsets, each of which is dense in S.

In this paper, we shall not use the constructions provided in [1]. The
strengthened results provided here are consequences of constructing subsets
of X, S which are more amenable to analysis than the corresponding
constructions in [1].

[3] is a contemporary source of information about Hilbert spaces.

We should emphasize what we are not trying to accomplish in this and
subsequent sections. We are not attempting to show that X, (.S is simply
connected and contractible, while being dense in S. Rather, we will show
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that there is a subset C., to be defined below, of X.[)S which is simply
connected and contractible, while being dense in S. As C. C X.()S C X,
it follows that if ¢ # d, then C. and Cy are disjoint as they are subsets of
the disjoint sets X, and X4, respectively.

2. PATH CONNECTEDNESS OF C,. FOR ¢ € R

Definition 3.

def. ..
m(po, P1,9q) ef the plane containing py, p1 and g such that pg,p1 € X. NS,
q € Xe,q ¢ opi.

As po,p1, and ¢ are points of X. and X, is affine, 7(po, p1,q) C Xe.
Definition 4.

def.
{C:}eer < {Sn7(po,p1,9) | po,p1 € XcNS
q€ Xe,q ¢ Popi}

Let the sphere S in £ have center = (x1, 2,23, ...) and radius r. Let
po,p1 € X.NS and g € X, such that ¢ is not on the line containing py and
p1. Let w(po, p1, q) denote the plane containing pg, p1, and g. We may create
a new orthonormal basis {e], e}, e, ...} by letting e} be ﬁ, letting e}
be a normalized vector in m(pg,p1,q) which is perpendicular to €} at po,
and for ¢ > 3, constructing e by the Gram-Schmidt Orthonormalization
process.

Note that po = (0,0,...), = (z},25,2%,...), and a point y is in
7(po, p1,q) if and only if for ¢ > 3, y. = 0. Let H = (z,5,0,0,...).
Define u, v, and w by:

u=x—H=(0,0,25,2,...),
v=py— H = (—x2],—15,0,0,...), and
w=p —H = (p}, —,p}, —25,0,0,...).
Thus, (u,w) = (u,v) = 0and H = (), 25,0,0,...) is the point of 7(po, p1, q)
o0
nearest to z. ||z — H|* = 3. (2)% < r2, as norms are independent of the

1=
choice of orthonormal bases. Thus, H is interior to S. We now establish a
lemma.

Lemma 1. 7(po,p1,q) NS is a circle in w(po, p1,q) with center H.

Proof. The sphere S is the set of points s = {s},sh,s},...} such that
o0

> (st — x})? = r?. The plane 7(po, p1,q) is the set of points
i=1
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s = {s}, sh, s%,...} such that if i« > 3, s} = 0. Thus, 7(po, p1,¢) NS is the
set of points s = {s], s5, s%, ...} such that

oo

00 2
3G al? = X (L=l 4 D]~

=1 =

1
= s—x —I—Z
1

1=

V)

The last equation above is the equation of the circle in 7(po,p1,q) with

o0

center H and radius ,/r2 — Y (z})2. O
i=3

We shall refer to that circle as C. By construction pg and p; are points
of the circle. Moreover C' C X, as C' C w(pg, p1,q). Thus, CNS C X.NS.
As C'is a circle, there are two arcs, which are necessarily path connected,
in C connecting pg and p;. Given any two points o and 5 of S and € > 0, pg
€ X.NS and p; € X.N S may be chosen such that py is within € of o and
p1 is within € of §. That is, there is a path-connected C' € {C.}.cr within
e each point of S, showing that {C.}.cr is a collection of mutually disjoint
path-connected dense subsets of S. Thus, we have the following lemma.

Lemma 2. {C.}.cr is a collection of uncountably many mutually disjoint
path-connected subsets of S, each of which is dense in S.

3. SIMPLE CONNECTEDNESS OF C. FOR ¢ € R

The set-up for our work of simple connectedness is illustrated by Figure
1. To prove Simple Connectedness for the members of C., we shall show
that any arc between py and p; produced in the manner indicated in the
prior section can be continuously transformed into any other arc between
po and p; which was also produced in that manner. Let gy be the point
which determined the plane used to construct one such circle and let ¢; be
the point which determined the plane used to construct the other circle.
Adopting the convention that a % b * ¢ means that a, b, and ¢ are collinear
and b is between a and ¢, let g2 such that H % (p“—;rpl) x gy and ¢o ¢ m.

As H and (p°+p1) are points of X., g2 € X,.. Let ¢(t) be defined as follows.

t d_ef{qO+2t((J2—(J0) ifo<t<i,

2+ 2t—1) (1 —q2) if$<t<1
Note that this path was chosen to avoid the possibility of there being a
number ¢ in (0,1) such that ¢(¢) is a point of the line between py and p;
and of m. The former restriction assures that ¢(¢) may produce a plane
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P(t)

—

FIGURE 1. The set-up for the section on simple connectedness.

m(po,p1,q(t)) and the latter restriction assures that the points ¢(¢) lie in a
plane. By convexity, ¢(t) € X, for all ¢.

Let @ denote the plane determined by §ogs and &qi. By construction,
Q intersects popi, but Popi is not contained in Q. Thus, we may consider
the following arguments in three dimensional space. We shall use ﬁﬁ)_l) as
a hinge, about which planes may be produced from the three non-collinear
points pg, p1, and ¢(t). Let P(t) denote the plane determined by pg,p1,
and ¢(t).

As the points of a circle C are developed continuously from its center
H, H is developed from a plane by using continuous vectors and norms,
planes P(t) are developed continuously by pivoting points ¢(t) around the
line containing py and p;, and the points ¢(t) are developed continuously
from gy and ¢;. It follows that the circles C' are the image of a continuous
function C(t) of [0, 1] such that C'(0) is the first circle and C(1) the second
circle. Thus, we have the following lemma.

Lemma 3. {C.}ccr is a collection of uncountably many mutually disjoint
simply-connected subsets of S, each of which is dense in S.

4. CONTRACTIBILITY OF C, FOR c € R

The set-up for our work on contractibility is illustrated by Figure 2.
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FIGURE 2. The set-up for the section on contractibility.

We will refer to a prior result holding that if pg, p1 € X.N S, then there
is a point x = (z},25) in a plane P C X, such that the intersection of P
with S is a circle C' with center z = (2, 2%) containing pg and p;.

Let z be any point of X, NS, which is not a point of the circle C. We
will find the angles between the rays connecting the center of the circle C'
with the points of the circle C' and the fixed ray connecting the center x
to z. As the function which denotes the angles is continuous on a closed
interval, it assumes a maximum value. Then we will use that maximum
angle to aid contraction. The true position of the contraction will be closer
to z than the contraction under the generous estimate of the angle. That
is, we will use a process similar to the Sandwich (or Squeeze) Theorem.

Part I: Let C be the circle in X.NS which contains two paths connecting
po and p;. Parameterize the points p of C, by p(u), u in [0, 1]. Let 6(u) =
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arccos ( Iﬁjp(”)_m’z_m>

f) As the denominator is positive and constant, 6(u)
(u)—z||[[z—=]l

has a max on [0,1]. Let 6" max {0(uw)},u € [0,1].

Part II: For w in [0,1], @ > 0(u) > 0. Thus, if ¢ in [0,1), (1 —¢)0 >
(1 =t)8(u) > 0. Let p be a point of C. The plane II containing p, x, and z
is a subset of X, as all three points are points of X, and X, is affine. An
argument in the section above concerning path connectedness assures that
IIN S is a circle. Thus, the point set connecting p with z in IT is an arc of
a circle and also a subset of X. N S. As the curve is an arc of a circle, any
ray whose initial point is interior to S intersects S only once. Thus, there
is a unique point p(¢) on the curve such that the angle between the vectors
p(t) —z and z — z is (1 — t)6.

In like manner, there is a unique point p(u,t) on the curve such that the
angle between the vectors p(u,t) —z and z — z is (1 — t)0(u). It follows
that p(u,t) is between p(t) and z on the arc. Thus, contracting p(t) to z
will contract p(u,t) to z.

Part III: S has radius r. Any circle on S has radius < r. Thus, the
arc length L(t) on S between p(t) and z is less than (1 — t)fr. Or, L(t) <
(1 —t)fr. Then tlirln L(t) = tlir{l (1 —t)8r = 0. As ||p(t) — z|| < the arc

— 1 — 17

length between p(t) and z, it follows lim ||p(t) — z|| = 0. Then the remark
t—1-

near the end of Part II proves contractibility. That is, C, is contractible.
Thus we have the following lemma.

Lemma 4. {C.}.cr is a collection of uncountably many mutually disjoint
contractible subsets of S, each of which is dense in S.

We will now show that if C' € C., C is Frechet differentiable.
Lemma 5. For c € R, each path in C. is Frechet Differentiable.

Proof. Gamelin and Greene [2, p. 47] offers a definition of Frechet Differen-
tiability in Banach spaces and hence in £2. For convenience, we shall refer
to the expression x — z¢ on that page as h. By construction, each path C
in C, is a circle. Utilizing a process carried out earlier, we may construct
an orthonormal basis with origin at the center of C and whose first two
members are contained in the plane containing C. In that system z € C
implies ||z| = r or G(z) = (z,x) = 1. £? is the open subset of ¢? required
by the definition. Thus,

G(z) — G(x —h) —T(h)

& Il )
iy (%2) — (@ 2) = 2@ h) + (b R)] ~ T(R)
ho 5] '

Setting T'(h) to 2(x, h), expression (1) becomes
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By . —|h)?
l _—— =
nso Rl hso Al
O

Thus, C is a Frechet differentiable path and its derivative is 2(z,h).
Finally, we have the following theorem.

Theorem 1. {C.} .y is a collection of uncountably many mutually dis-
joint, simply connected, Frechet differentiable and contractible subsets of S,
each of which is dense in S.
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