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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

152. [2004, 130; 2005, 201-202] Proposed by Joe Flowers and Doug
Martin (student), Texas Lutheran University, Sequin, Tezas.

Let

F(s) = Llf@) = [ e
0
denote the Laplace transform of f(¢). Find L[sin" bt], where b is any real
constant and n is any non-negative integer.
Also solved by Kenneth B. Davenport, Dallas, Pennsylvania.

153. [2005, 52] Proposed by Joe Howard, Portales, New Mezico.

Let n > 2 be an integer. Prove that

n

n”>(n+1)"71+n+1.

Solution by Thomas P. Dence, Ashland University, Ashland, OH. The
inequality is clearly true for n = 2. Since

n

<1
n+1

and n", (n 4+ 1)"~! € N, then it suffices to show that
n">m+ 1"
or equivalently,
n" > (n 4 1)n71

for all n > 3. But this is true if and only if

nn

—>1
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1\" 1\"
n+1><”+ ) _(1+—) .
n n

Expanding the latter binomial gives

e S (ML (ML ()
n) 2/ n? 3/ n3 n)nn

if and only if

1n-—1 In—1n-2 ln—1n-2 1
<1l+1+ = — o
2! 3 n n n!l n n n
n o0 1 oo
<Zk|<1+25<1+22k—3<”+1
k=0 k=1 k=0
for all n > 3.

Also solved by Kenneth B. Davenport, Dallas, Pennsylvania; Ovidiu
Furdui, Western Michigan University, Kalamazoo, Michigan; Mohamed
Akkouchi, Université Cadi Ayyad, Marrakech, Morocco (2 solutions); C.
Wesley Nevans, Truman State University, Kirksville, Missouri (student);
Huizeng Qin, Shandong University of Technology, Shandong, People’s Re-
public of China; Said Amghibech, Sainte Foy (qc), Canada; and the pro-
poser.
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154. [2005, 52] Proposed by Ovidiu Furdui, Western Michigan Univer-
sity, Kalamazoo, Michigan.

Let n > 1 be an integer and m > 0, m < 2n. Prove that

/OO/OO'”/OO sinxy sinxg - - - sinxy, deydiy - - d,, — 1 -B(T;n—
o Jo o (@1taet-Fx,)m 2T (m) 2

where I'(+) is the Gamma function and B(:,-) is the Beta function.

Solution by Said Amghibech, Sainte Foy (qc), Canada . We have

for all @ > 0. By choosing a = z1 + 22 + - - - + x,, we get

I‘(m)/ / / sinzy sinzs - - - sinx, derdes - de, = 1
o Jo 0o (@ +mt-tan)m

and

00 00 n 0o tmfl
I :/ </ sin:vexp(—tx)dx) tmat :/ ———dt.
0 0 o (1+t2)"

By putting tan s = ¢t we obtain
/2
= / cos?" ™ML g5in™ ! sds.
0

By putting sin® s = y we get

1
2I = / y2l1-y)" Ty =B (mn - @)
o 2 2

which gives the result.

Also solved by the proposer.
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155. [2005, 53] Proposed by José Luis Diaz-Barrero, Universidad
Politécnica de Cataluna, Barcelona, Spain.

Let P be any point inside AABC and let A’ = AP N BC, B’ =
BPNAC, and C' = CP N AB. Prove that

1 N 1 N 1 >4\/§\/ 1
AA?  BB? cc?~ 3 \ AP+ BPY+CPY

Solution by Ovidiu Furdui, Western Michigan University, Kalamazoo,
Michigan. First we show that

AP BP CP

ar T ee too T*
To see this we notice that
AP pPA B o[BPC]
AAT AA g|ABC]’

where o[T] is the area of triangle T'. Let E € BC such that PE 1 BC and
D € BC such that AD | BC. Then APEA" ~ ANADA’ implies that

PA'" PE _PE-BC-j o[BPC]
AA" AD  AD-BC-i  o[ABC]
Therefore,
AP BP CP pPA"  PB' PC

ax e too T T Axw BB OO

o[BPC] + o[PCA] + o[APB]

o[ABC] =s-l=2

=3 -

Next we notice that

(AP? + BP? 4+ CP?)?
3

AP* + BP*+CP* >
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since
Al (a+b+c)?
3
Therefore,
44/3 \/ 1 - 44/3 V3
3 AP*+BP44+CP*~ 3 AP24 BP24+CP?

4
" AP2 + BP2 4+ (CP?’

Let us denote

AP BP CcP
[ . [ . I . _ = . _— K _— =
AA'=z; BB =y; CC' =z =% B B; oo

We observe then that it suffices to show

4 1 1 1
< .
AP2 + BP2 4+ CP2 — AA’? + BB'? + cer?

In view of the above notations this inequality is equivalent to

4 1 1 + 1
0272 + B2y2 + 4222 = g2 | 42 | 2

We know that

1 1 1 a? 32 ~?
ﬁ"'?*’;‘ 22 +ﬁ2y2+7222'

In view of the Cauchy-Buniakowsky-Schwartz inequality we get that

2 2 2
(@4 07 25 (S + s+ s )

a2:v2+62y2 7222
1 1 1\?
>|lax-—+By - —+vz- -
T Y z

=(a+B+7)7 =4
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Therefore,
4

> .
= o222 + B2y2 + 4222

1 1 1
2T gz

Also solved by Huizeng Qin, Shandong University of Technology, Shandong,
People’s Republic of China and the proposer.

156. [2005, 53] Proposed by Ovidiu Furdui, Western Michigan Univer-

sity, Kalamazoo, Michigan.

Prove that
3 ) ) . -
I= / cos” z (In*(2cosx) — In(2cosz)) do = — — —.
0 48 4
Solution by Joe Howard, Portales, New Mexico. From [1],
3 3
In®(2sin0)df = —.
/0 n”(2sin6) 5d
By letting 0 = § — z,
3 a3
In*(2 dz = —. 1
/0 n-(2cosz)dx o (1)

By L’Hopital’s Rule

lim sin 2z In*(2cosz) =0
=5

for k =1,2. Hence for k =1, 2,

[SE]

sin2zIn*(2cosz)| =0.
0
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Integrating by parts where u = x

+—/ In“(2cosx)dz. (3)
o 2Jo

us
2

z
/ z-tanz-In(2cosz)dr = —g In?(2 cos x)
0

Integrating by parts (u = In*(2cosz)) and using (1), (2), and (3),

s

2
I :/ cos? zIn?(2 cos z)dx
0

[SE]

1
= —sin2z1n*(2cos z)
4 0

s

+/2 xtanxln(2cos:z:)d:z:>
0

=

2

1
+ (517 In?(2 cos x)

0

s

2
—I—/ sin? z1n(2 cos x)dx
0

SO
=04+ — —|—/ sin® 2 In(2 cos z)dx.
48 Jo

Integrating by parts (u = In(2 cosz)) and using (2),

™

2 1
I, = / cos 2z In(2 cosx)dx = 3 sin 2z In(2 cos x)
0 0

vl

s

—I—/zsiandx:O—i-z.
0 4

Finally,

™

2
I=1 —/ cos? z1n(2 cos x)dx
0

3

z
_ T + / (sin2 T — cos® 2) In(2 cos x)dx
48 0

w

7T3 ™

v
48 T 48 14
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Also solved by Kenneth B. Davenport, Dallas, Pennsylvania; Huizeng
Qin and Yousim Lu (jointly), Shandong University of Technology, Shan-
dong, People’s Republic of China; and the proposer.



