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REPRESENTING INTEGERS IN THE BINARY NUMBER

SYSTEM AS PERMANENTS OF CERTAIN MATRICES

Seol Han-Guk

Abstract. The permanent of an m-by-n matrix A is the sum of all possible

products of m elements from A with the property that the elements in each of

the products lie on different lines of A. This scalar valued function of the matrix

A occurs throughout the combinatorial literature in connection with various enu-

meration and extremal problems. In this note, we construct a (0, 1)-matrix with a

prescribed permanent, 1, 2, . . . , 2n−1.

1. Introduction. Let A = [aij ] be an m-by-n matrix. The permanent of A

is defined by

per(A) =
∑

a1i1a2i2 · · · amim ,

where the summation extends over all the m-permutations (i1, i2, . . . , im) of the

integers 1, 2, . . . , n. Thus, per(A) is the sum of all possible products of m elements

of the m-by-n matrix A with the property that the elements in the product comes

from different columns of A. This scalar valued function of the matrix A occurs

throughout the combinatorial literature in connection with various enumeration

and extremal problems. In [1], it was shown that the existence of the (0, 1)-matrix

of order n whose permanent is k (0 ≤ k ≤ 2n−1). In this note, we construct a

(0, 1)-matrix whose permanent is k (0 ≤ k ≤ 2n−1) by the binary number system

of k. Its related matrices are also considered.

2. Construction of (0,1)-Matrix with Permanent k. For the purpose of

our construction, we define the following matrix.
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Definition 1. Let Bn be the following n-by-n (0, 1)-matrix.

Bn = [bij ] =


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

1 1 1 1 · · · 1 1 1 1 1
1 1 0 0 · · · 0 0 0 0 0
1 1 1 0 · · · 0 0 0 0 0
1 1 1 1 · · · 0 0 0 0 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
1 1 1 1 · · · 1 1 1 1 0
1 1 1 1 · · · 1 1 1 1 1
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We say Bn is the basic matrix of order n.

Let A = [aij ] be an m-by-n real matrix with row vectors α1, α2, . . . , αm. We

say A is contractible on column (row) k if column (row) k contains exactly two

nonzero entries. Suppose A is contractible on column k with aik 6= 0 6= ajk and

i 6= j. Then the (m− 1)-by-(n− 1) matrix Aij:k obtained from A by replacing row

i with ajkαi+ aikαj and deleting row j and column k is called the contraction of A

on column k relative to rows i and j. If A is contractible on row k with aki 6= 0 and

akj 6= 0 for some i 6= j, then the matrix Ak:ij = [AT
ij:k]

T is called the contraction

of A on row k relative to columns i and j. Now we can evaluate the permanent of

Bn.

Lemma 1. perBn = 2n−1.

Proof. By the contraction of Bn on column n relative to rows 1 and n, perBn =

2perBn−1. Since perB2 = 2, it follows by induction that perBn = 2n−1. The proof

is complete.

In addition, we may define a related matrix using Bn.

Definition 2. Bn(n, k) = Bn−En,k, where En,k is a cell which is a (0, 1)-matrix

with only one entry equal to 1, the (n, k) entry.

Definition 3. Bn(n|k) is the submatrix of Bn whose nth row and kth column

are deleted.

Proposition. perBn(n, k) = 2n−1 − 2k−2, (k = 2, 3, . . . , n) and perBn(n, 1) =

2n−1 − 1.
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Proof. It easily follows that perBn(n|k) = 2k−2, k = 2, 3, . . . , n, and

perBn(n|1) = 1. Since perBn(n, k) = perBn − perBn(n|k), perBn(n, k) =

2n−1 − 2k−2, k = 2, 3, . . . , n and perBn(n, 1) = 2n−1 − 1. The proof is complete.

Now we define the process of the construction of a (0, 1)-matrix by the binary

number system (base 2), and give the main result.

Definition 4. Let t be a positive integer with 2n−2 ≤ t ≤ 2n−1 and t(2) =

xn−2xn−3 · · ·x1x0 be the binary representation of t, where the xi’s are 0 or 1.

Define xc
k = 1 if xk = 0, and 0, otherwise.

Theorem. Let t be a positive integer with 2n−2 < t ≤ 2n−1 and t(2) =

xn−2xn−3 · · ·x1x0 be the binary representation of t. Let Bn(t) be obtained from

Bn by replacing bn,k to xc
k−1, for all k = 1, 2, . . . , n− 1. Then perBn(t) = 2n−1− t.

Proof. Let t(2) = xn−2xn−3 · · ·x1x0. Then t = xn−22
n−2 + xn−32

n−3 + · · ·+

x1 + x0. By the expansion of the nth row of Bn(t),

per(Bn(t)) =

n
∑

k=1

bnkperB(n|k)

= perB(n|1) +

n
∑

k=2

xc
k−2perB(n|k) + perB(n|n)

= 1 +

n
∑

k=2

xc
k−22

k−2 + 2n−2

= 2n−1 −

n
∑

k=2

xk−22
k−2

= 2n−1 − t.

The proof is complete.
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Example. Let k = 389. Then

B10 =
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1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
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with permanent 512 = 29. Take t = 123. Then (123)(2) = 01111011. Then

B10(123) =




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1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 0 0 1 0 0 0 0 1 1
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

and perB10(123) = 512− 123 = 389.

Conclusion. For any positive integer k, we can find a (0, 1)-matrix with per-

manent k, (1, 2, . . . , 2n−1).

3. Some Results for Related Bn. Now we may consider the permanent

of matrices by replacing 0 entries in Bn by 1. The following theorem contains

properties of permanents for matrices which are related to Bn. Recall that matrix

Ei,j is a cell with appropriate size.

Theorem.

(1) per(Bn + E2,k) = 2n−kper(Bk + E2,k), (k = 3, 4, . . . , n− 1).

(2) per(Bn + E2,n) = 2perBn−1 + per(Bn−1 + E2,3 + E3,4 + · · ·+ En−2,n−1).
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(3) per(Bn + E2,3 + E3,4 + · · ·+ En−1,n) = 2× 3n−2.

(4) per(Bn + E3,k) = 2n−k+1per(Bk−1 + E2,k−1), (k = 4, 5, . . . , n− 1).

(5) per(Bn + Ek,n) = 2k−2per(Bn−k+2 + E2,n−k+2), (k = 3, 4, . . . , n− 1).

Proof.

(1) By contraction of Bn+E2,k on column n relative to rows of 1 and n, we obtain

per(Bn + E2,k) = 2per(Bn−1 + E2,k), where the order of E2,k is n − 1. Now

we apply this process to Bn−1 + E2,k of order n − 1. Then per(Bn + E2,k) =

2n−kper(Bk + E2,k), (k = 3, 4, . . . , n− 1).

(2) Expanding the second row of (Bn + E2,n), we obtain per(Bn + E2,n) =

2perBn−1 + per(Bn−1 + E2,3 + E3,4 + · · ·+ En−2,n−1).

(3) Expand the second row of per(Bn+E2,3+E3,4+ · · ·+En−1,n) = 3per(Bn−1+

E2,3 + E3,4 + · · ·+ En−2,n−1). Continuing this process, we obtain the matrix

J3 with permanent equal to 3!.

(4) Contracting Bn + E3,k on row 2 relative to columns 1 and 2, we have that

per(Bn+E3,k) = 2per(Bn−1+E2,k−1). Now applying formula (1) to the matrix

Bn−1+E2,k−1, we have that per(Bn−1+E2,k−1) = 2n−k−2per(Bk−1+E2,k−1).

(5) Contracting Bn + Ek,n on row 2 relative to columns 1 and 2, we have that

per(Bn +Ek,n) = 2per(Bn−1 +Ek−1,n−1). Continuing this process, we obtain

the matrix Bn−k+2 + E2,n−k+2. This leads us to the conclusion.

The proof is complete.
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