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A GLIMPSE INTO THE WONDERLAND
OF INVOLUTIONS

Joseph Wiener and Will Watkins

1. Introduction. The concept of an involution is fundamental in the theory of
groups and algebras. Our interest in this paper is to consider involutions in a more
humble setting and to illustrate their use in solving some problems of geometry,
theory of functional differential equations, and linear algebra. A function f(x) # x
that maps a set of real numbers onto itself and satisfies on this set the condition

f(f(z) == (1)

or, equivalently,
f(‘r) = f_l(x)v (2)

is called an involution. In other words, an involution is a mapping that coincides
with its own inverse. Identity (1) considered as a functional equation is called the
Babbage equation. It belongs to the oldest functional equations and was investigated
first by Charles Babbage. The simplest examples of involutions are: reflection

filz) = —=x, x € (—00,00)

and inversion (reciprocation)

o) = i 2 € (0,00).

Obviously,
fa(@)=c—z

is an involution on (—oo0,00) where ¢ is an arbitrary real. Other examples of invo-
lutions may be found in [1] and [2]. Note that the graph of an involution is always
symmetric with respect to the line y = x (since the graph of the inverse of an
invertible function is obtained by reflection about y = ). This simple geometric
notion can serve to introduce students to some interesting self-inverse functions and
motivate them to think further about their properties.

2. Properties of Involutions. Involutions on the whole number line are
sometimes called strong involutions [2]. One of the methods for obtaining strong
involutions is the following [3]. Assume that a real function g (x,y) is defined
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on the set of all ordered pairs of real numbers and is such that if g (x,y) = 0,
then ¢ (y,z) = 0. In particular, this condition is satisfied if g is symmetric, i.e.,
g(x,y) = g(y,x). If to each = there corresponds a single real y = f(z) such that
g (x,y) =0, then f is a strong involution. For example, if

g(@y)=r+y—c
then from the equation x +y — ¢ = 0 we obtain the involution
fl@)=c—x.

If we take
g(zy) =2 +y°—c,

the equation g (x,y) = 0 generates the involution

f(z) = /e — 3.
Furthermore, the symmetric function
g(@y)=cry—a(x+y)—b

originates the important class of bilinear involutions,

fla) = 22E0 (3)

Cr —a

Since most formulas for areas and perimeters are symmetric with respect to the
dimensions, bilinear involutions are useful in solving “perimeter equals area” prob-

lems [1, 4].

Example 1. For a rectangle of dimensions x and y the equality of its perimeter
and area is equivalent to the equation

2(+y)=ay

whence
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which is a bilinear involution. To find the integer solutions of the problem, we write

and since x — 2 divides 4 we readily obtain solutions (4,4) and (3,6), and (by sym-
metry) the solution (6,3). Thus, there exist precisely two integer-sided rectangles
that have perimeter and area equal.

Example 2. For a right triangle with legs = and y, “perimeter = area” is
expressed by the equation

1
z+y+Va?+y? =gy,

which leads to the involution

_4x—8_4+ 8
T orx—4 x—4

Y

In the case of integer solutions, z — 4 divides 8 and checking
r—4=2% £k=0,1,2,3

yields solutions (5,12) and (6,8). By symmetry of the involution’s graph about the
line y = x, we also have solutions (12,5) and (8,6). Thus, (5,12) and (6, 8) are the
two solutions that describe all integer-sided right triangles having perimeter and
area equal.

Involutions have a number of interesting features, the simplest of which are
considered below.

Property 1. Every involution f(z) on a set G is one-to-one.

Proof. Indeed, let z1,22 € G and x1 # x2. Suppose that f (x1) = f (z2), then

F(f(z1) = f(f(22)).

By virtue of (1), this means 27 = x5 which contradicts the assumption.

Property 2. If f(z) is an involution on (—o0, 00) with a fixed point p, then the
function

g(x) = flz+p)—p
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is an involution with the fixed point 0. Conversely,

fx)=g(x—p)+p

is an involution with the fixed point p, provided that 0 is a fixed point of g.

Proof. In fact, let f(f(x)) = z on (—oo,00) and f(p) = p. Then for every z,
we have

g(f(x+p)—p)=flf(x+p)—p+p| —p
=f(flx+p) —p=z+p-—p=n2.

Moreover, g(0) = f(p) — 0.

Property 3. Let f(z) be a continuous involution on (—oo,00). Then f(z) is
decreasing.

Proof. Since f(x) is one-to-one, it is strictly monotone. By the assumption
f(z) £ z, there exists zg such that f(xg) # . Suppose that f(z) is increasing and
let f(zo) > xo; then f(f(xo)) > f(xo), that is, xg > f(zo) which is a contradiction.
Now assume f(z9) < zo; then f(f(x0)) < f(zo), that is, zg < f(z¢) which is a
contradiction. Hence, f(z) is decreasing.

Property 4. Let f(z) be a continuous involution on (—o0,00). Then f(z) has
a unique fixed point.

Proof. Consider the function g(z) = f(x) — . It is continuous and decreasing
on (—o0,00). Furthermore, since

lim f(z) =400, lim f(z)= —o0,

Tr——00 Tr—+0o0

then also
lim g(z) = 400, lim g¢(z) = —o0,

T—r—00 Tr—r+00

and hence, there exists a unique point p such that g(p) = 0. Thus, f(p) —p =0, or
f(p) =p.

Property 5. If f(z) is a continuous involution on (—oo,00) and f(z) is odd,
then f(z) = —x.

Proof. Assume f(z) is an odd function. Since f(—z) = —f(z), we have
f(0) = —f(0). Hence, f(0) =0 and = = 0 is the unique fixed point of f. Suppose
that f(z) # —z. If f(z) > —=x, then f(f(z)) < f(—=z) because f is decreasing.
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Therefore, < —f(z) or f(z) < —z, which contradicts the assumption f(z) > —z.
If f(z) < —z, we have f(f(z)) > f(—z). Hence, z > —f(z) or f(x) > —z, which
is a contradiction. Thus, we conclude that f(x) = —z.

Property 6. Every continuous involution f(z) on (—oo,c0) with a fixed point
p is of the form

(@)= fo(x—p) +p, (4)

where

fo () = { g(x), for x > 0

g 1(x), forx <O0;

g(z) is a continuous function on (—oo,00) such that g(0) = 0, g(z) < 0 for z > 0,
g(z) is decreasing for z > 0, and g~!(x) is the inverse function to g(x). Conversely,
every function of the form (4) is a continuous involution f(z) on the real line with
the fixed point p.

Proof. If f(z) is a continuous strong involution with the fixed point p, then
by virtue of Property 2, fo(0) = 0 and fo(fo(x)) = 2 which implies f; *(z) = fo(x)
and the function f(z) can be written in form (4). Conversely, assume that the
function g(x) is continuous on (—o00,00), g(0) =0, g(z) < 0, for z > 0, and g(x) is
decreasing for z > 0. Since g(x) < 0 for z > 0, we have fo(fo(x)) = g 1(g(z)) = =.
For z < 0, we put u = g~!(x), then g(u) = z < 0, which implies g~(z) = u > 0.
Hence, fo(fo(z)) = g(g(x)) =z for x < 0.

These and other properties of involutions may be found in books [2, 5, 6] where
they have been used in the theory of functional and functional differential equations.

3. Differentiating Differential Equations. Differential equations with
involutions were introduced for the first time in [7] and [8] and since then have
become an important part in the general theory of functional differential equations,
with applications to certain biomedical models [9], stability of motion [10], and
the pantograph equation [11]. They can be transformed into ordinary differential
equations and thus provide an abundant source of relations with analytic solutions,
as well as heuristic ideas for equations of more general nature.

Example 3. The solution of the initial-value problem for the differential equa-
tion with reflection of the argument,

Y (z) = ay(—x), y(0)=wo (5)

can be obtained very easily by a differentiation of (5). In fact,

y'(r) = —ay'(—x)
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and by (5),
y'(—z) = ay().
Consequently,
y'(z) = —a’y(z) or y"(z)+ay(x) = 0.

This is a second-order ordinary differential equation, with the general solution
y(x) = Cy cosaz + Cy sin ax.

Two initial conditions are available to determine the values of C7 and Cs. From
(5), we have
y(0) =yo and y'(0) = ayo.
Therefore, Cy = yo, C2 = yo, and the solution of problem (5) is
y(x) = yo(cos ax + sin azx). (6)

It is instructive to draw the students’ attention to the sharp distinction between
the qualitative behavior of the solutions to (5), which are periodic, and the solu-
tions of the corresponding ordinary differential equation y'(x) = ay(z), which are
monotonic.

Example 4. Silberstein [12] studied the equation

and assumed a solution of the form
y(x) = 2% + \a™,
where k, m, and \ are constants. Substituting in (7) gives
kb=t + dma™ =7k 4 N

and
k+m=1, A=k, km=1.

Hence, k2 — k + 1 = 0, and simple computations yield the solution. On the other
hand, since f(z) = 1/x is an involution on (0, c0), differentiating (7) leads to the
solution in a very elegant fashion. Indeed,
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whence,

2%y (x) +y(z) = 0.

This is a Cauchy-Euler equation, with the general solution

(' cos (?m:z:) + Cysin (?hm)] .

Substituting y(x) in (7), we obtain C; = v/3Cy and

y(z) =V

y(z) = Cy/x cos (? Inz — %) : (8)

The above examples illustrate the following theorem [2].

Theorem 1. Let the equation

y'(x) = F(z,y(2), y(f(2))) (9)

satisfy the following hypotheses.

(i) The function f(z) is a continuously differentiable strong involution with a fixed
point xg.

(ii) The function F' is defined and is continuously differentiable in the whole space
of its arguments.

(iii) The given equation is uniquely solvable with respect to y(f(x)):

y(f(2)) = Glz,y(z), ¢ (2)). (10)

Then the solution of the ordinary differential equation

oF oF oF

y'(@) =5+ my’(ﬂf) + mf’(x)F(f(x)vy(f(l“))vy(x)) (11)

(where y(f(x)) is given by expression (10)) with the initial conditions

y(xo) = yo, ¥ (x0) = F(z0,v0,Y0) (12)
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is a solution of (9) with the initial condition
y(z0) = Yo. (13)

Proof. Equation (11) is obtained by differentiating (9). Indeed, we have

(@) = Gy oy (@) + Gzt (F@) (o)

X

but from (9) and the relation f(f(z)) = z it follows that

y'(x) = F(f(x),y(f(x)), y(x)).

The second of the initial conditions (12) is a compatibility condition and is found
from (9), with regard to (13) and f(xg) = xo.

It is especially clear to see the role of involutions in equations the right-hand
sides of which do not contain z and y(x) explicitly. In this case

y'(x) = F(y(f(2)))- (14)

Theorem 2. Assume that in (14) the function f(x) is a continuously differ-
entiable strong involution with a fixed point z¢ and the function F(x) is defined,
continuously differentiable, and strictly monotone on (—o0c,00). Then the solution
of the ordinary differential equation

y' (@) = Fly(f (@) F(y(@))f (@),

with the initial conditions

y(zo) =yo, ¥'(z0) = F(yo)
is a solution of (14) with the initial condition y(x¢) = yo.

Example 5. By differentiating the equation
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and taking into account that

we obtain the ordinary differential equation

The fixed point of the involution f(z) = a — x is £y = a/2. The initial condition
for (15) is

Equation (16) is integrable in quadratures.

y(x) = yo exp (””‘3/2).

Yo

This is a solution of the original equation (15).
In conclusion, let us consider the differential equation with reflection

y'(x) = ay(z) + by(—x) (17)

and denote
2(z) = y(—x).
Then 2/(z) = —y'(—x) and, by virtue of (17), we have

—y' (=) = —ay(—x) — by(x). (18)
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Combining (17) and (18) produces a linear system of ordinary differential equations

dy dz
o = ay + bz, s —by — az, (19)

with the initial condition y(0) = 2(0). From the qualitative analysis of the solutions
of system (19) the student can derive qualitative information about the solutions
of the equation with reflection. Furthermore, the matrix of the system,

has a remarkable property

A2_(a2—b2)((1) (1))

This observation naturally leads the student to the concept of an involutory matriz
the square of which is an identity matrix.
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