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A NEW METHOD TO OBTAIN PYTHAGOREAN

TRIPLE PRESERVING MATRICES

Mircea Crâşmăreanu

Abstract. Another method to obtain Pythagorean Triple Preserving Matrices

is proposed and a singular case is put in evidence. Also, a possible connection with

physics is sketched by proving that the set of these matrices is a group. In the

last section, we generalize our method to Weighted Pythagorean Triple Preserving

Matrices. An interesting open problem is generated by the fact that this type of

matrix appears as a product of two matrices of order 4 with a form suggesting

quaternions.

1. Pythagorean Triple Preserving Matrices. In [2] Palmer, Ahuja,

and Tikoo obtained all matrices which convert a Pythagorean Triple into another

Pythagorean Triple. In this paper we give a second method which uses the matrix

equation of a quadric in real 3-dimensional space.

Recall that a Pythagorean Triple (PT) is a triple (a, b, c) of natural numbers

such that a2 + b2 = c2 and recall that the general expression of a PT is

(a, b, c) = (m2 − n2, 2mn,m2 + n2)

where m and n are two integers. So, a PT represents the coordinates of a point

X ∈ R
3 which belongs to the quadric Γ : x2 + y2 − z2 = 0. The matrix equation of

this quadric is Γ : Xt · S ·X = 0 where

X =





x

y

z



 and S =





1 0 0
0 1 0
0 0 −1



 .

Using [2], define a Pythagorean Triple Preserving Matrix (PTPM)

A =





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3



 .
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That is, if X ∈ Γ then A · X ∈ Γ. Therefore, (AX)
t · S · (AX) = 0 which means

Xt · (AtSA) ·X = 0. In conclusion, A is a PTPM if and only if there exists a real

number ρ such that

AtSA = ρS. (1.1)

A straightforward computation leads to the following form of (1.1).







































α2
1 + β2

1 − γ2
1 = ρ

α2
2 + β2

2 − γ2
2 = ρ

α2
3 + β2

3 − γ2
3 = −ρ

α1α2 + β1β2 − γ1γ2 = 0

α2α3 + β2β3 − γ2γ3 = 0

α3α1 + β3β1 − γ3γ1 = 0.

(1.2)

If we make exactly the choice of [2], namely

{

r2 = α1+α3+γ1+γ3

2 , s2 = α3−α1+γ3−γ1

2

t2 = γ1+γ3−(α1+α3)
2 , u2 = γ3−γ1−(α3−α1)

2 .
(1.3)

then, from (1.21), (1.23) and (1.26) it follows that

{

β1 + β3 = 2rt

−β1 + β3 = 2su

which gives

{

β1 = rt− su

β3 = rt+ su.
(1.4)

From (1.3) we have, exactly as in [2], that







α1 =
(r2−t2)−(s2−u2)

2 , α3 =
(r2−t2)+(s2−u2)

2

γ1 =
(r2+t

2)−(s2+u
2)

2 , γ3 =
(r2+t

2)+(s2+u
2)

2

(1.5)
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and then, from (1.21) it follows that

ρ = (ru − st)
2
. (1.6)

Equations (1.22), (1.24) and (1.25) yield











α2 = rs − tu

β2 = ru + st

γ2 = rs+ tu.

(1.7)

In conclusion, from (1.4), (1.5) and (1.7), it follows that the general form of a

PTPM is

A (r, s, t, u) =





1
2

(

r2 − t2 − s2 + u2
)

rs− tu 1
2

(

r2 − t2 + s2 − u2
)

rt− su ru + st rt+ su
1
2

(

r2 + t2 − s2 − u2
)

rs+ tu 1
2

(

r2 + t2 + s2 + u2
)



 (1.8)

which is exactly the expression given in [2].

A first advantage of the present method (which is of geometrical nature, like

PT) is that it uses only 10 variables, namely (αi) , (βi) , (γi) and ρ, instead of 11

variables (αi) , (βi) , (γi) ,M,N as in [2]. A second advantage is that given in the

singular case ρ = 0 for relation (1.1) which we will discuss below. A third advantage

is that it offers a very quick proof that the set of PTPM, considered with rational

entries, is a group with respect to multiplication (see section 3).

We can obtain the pair (A (r, s, t, u) , ρ) from the product of two matrices of

order 4. Considering

Φ1 =







r −s −t u

t −u r −s

r −s t −u

t −u −r s






and Φ2 =







r s r s

s −r −s r

t u t u

u −t −u t






(1.9)
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we obtain

1

2
Φ1 · Φ2 =

1

2







r2 − s2 − t2 + u2 2 (rs− tu) r2 + s2 + t2 + u2 0
2 (rt− su) 2 (ru+ ts) 2 (rt+ su) 0

r2 − s2 + t2 − u2 2 (rs+ tu) r2 + s2 + t2 + u2 0
0 0 0 −2 (ru − st)







=

(

A (r, s, t, u) 0
0 −√

ρ

)

(1.10)

and this fact, using the expression of Φ1 and Φ2 yields the following problem.

Open problem. Does there exist a connection between PTPM and the algebra

of quaternions?

As a possible answer, let us note that the matrix (1.8) is close to the matrix

from [4] representing the rotations in R
3.

2. The Singular Case. For relation (1.1) the case ρ = 0 appears as a singular

case. From relation (1.6) we have ru = st.

Case I. Suppose that one of r or u is zero. Then one of t and s is zero. We

make the choice r = s = 0 and then it follows that

A (0, 0, t, u) =





u2
−t2

2 −tu −u2
−t2

2
0 0 0

t
2
−u

2

2 tu t
2+u

2

2



 =
t2

2





−1 0 −1
0 0 0
1 0 1





+
u2

2





1 0 −1
0 0 0
−1 0 1



+ tu





0 −1 0
0 0 0
0 1 0





= t2A (0, 0, 1, 0) + u2A (0, 0, 0, 1) + tu





0 −1 0
0 0 0
0 1 0



 . (2.1)
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We have

A (0, 0, 1, 0)





m2 − n2

2mn

m2 + n2



 =





−m2

0
m2



 and A (0, 0, 0, 1)





m2 − n2

2mn

m2 + n2



 =





−n2

0
n2



 .

That is, we obtain the “singular” PT (−1, 0, 1) .

Case II. Suppose that r, u 6= 0. Then s, t 6= 0. From the relation s = ru
t

it

follows that

A
(

r,
ru

t
, t, u

)

=









1
2

(

r2 − t2 − r
2
u
2

t2
+ u2

)

r
2
u
t

− tu 1
2

(

r2 − t2 + r
2
u
2

t2
− u2

)

rt − ru2

t
2ru rt+ ru2

t

1
2

(

r2 + t2 − r2u2

t2
− u2

)

r2u
t

+ tu 1
2

(

r2 + t2 + r2u2

t2
+ u2

)









.

(2.2)

For example,

A (r, ru, 1, u) =





1
2

(

r2 − 1− r2u2 + u2
)

u
(

r2 − 1
)

1
2

(

r2 − 1 + r2u2 − u2
)

r
(

1− u2
)

2ru r
(

1 + u2
)

1
2

(

r2 + 1− r2u2 − u2
)

u
(

r2 + 1
)

1
2

(

r2 + 1 + r2u2 + u2
)





(2.3)

and then

A (r, r, 1, 1) =





0 r2 − 1 r2 − 1
0 2r 2r
0 r2 + 1 r2 + 1



 (2.4)

which gives

A (r, r, 1, 1)





m2 − n2

2mn

m2 + n2



 =





(

r2 − 1
)

(m+ n)
2

2r (m+ n)
2

(

r2 + 1
)

(m+ n)
2



 .
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So,

A (1, 1, 1, 1)





m2 − n2

2mn

m2 + n2



 =





0
2 (m+ n)2

2 (m+ n)
2





i.e. the “singular” PT (0, 1, 1). Comparing the results of this section with a propo-

sition from [2]: “no specific conditions on the nature of r, s, t and u are imposed”.

In conclusion, relation (1.1) characterizes PTPM yielding “non-singular” PT only

for the case ρ 6= 0.

3. Connections With Physics. A field of possible applications for the

previous results is the 2+ 1 Theory of Relativity. Consider R3 with the Lorentzian

metric ([5])

< ~A, ~B >= a1b1 + a2b2 − a3b3 (3.1)

for ~A = (a1, a2, a3), ~B = (b1, b2, b3) ∈ R
3. In [5], the pair E3,1 =

(

R
3, <,>

)

is

called the Minkowski 3-space. In this space-time the quadric Γ : x2 + y2 − z2 = 0

is exactly the set of null vectors ([5]). More precisely, Γ is the null cone of E3,1

because if ~A ∈ Γ then λ ~A ∈ Γ for all real λ.

Therefore, a PT represents a point in the null cone, with natural coordinates

and then a PTPM is a linear transformation of E3,1 which preserves the points of

natural coordinates from the null cone of E3,1.

Using (1.1) results in the fact that the set of PTPM with rational entries is a

group with respect to multiplication. Indeed, A is the unit matrix for r = u = 1,

s = t = 0 and if A1 and A2 are PTPM with corresponding ρ1 and ρ2, then (1.1)

yields

(A1A2)
t
S (A1A2) = At

2

(

At
1SA1

)

A2 = ρ1A
t
2SA2 = ρ1ρ2S

which means that A1A2 is a PTPM with corresponding ρ1ρ2. With MAPLE it is

easy to obtain the relation

A (r1, s1, t1, u1) · A (r2, s2, t2, u2)

= A (r1r2 + t2s1, r1s2 + u2s1, r2t1 + t2u1, t1s2 + u1u2) (3.2)
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which implies

A2 (r, s, t, u) = A
(

r2 + ts, (r + u) s, (r + u) t, ts+ u2
)

(3.3)

A−1 (r, s, t, u) = A

(

u

ru − st
,

−s

ru − st
,

−t

ru − st
,

r

ru− st

)

(3.4)

for ru 6= st (see the previous section). Other properties of A (r, s, t, u) which are

obtained with MAPLE are

(i) The trace is

TrA = r2 + u2 + ru + st. (3.5)

(ii) The eigenvalues are

λ1 = ru − st (3.6a)

λ2 =
1

2

(

r2 + u2
)

+ ts+
1

2

√

r4 − 2r2u2 + 4r2st+ u4 + 4u2st+ 8rstu (3.6b)

λ3 =
1

2

(

r2 + u2
)

+ ts− 1

2

√

r4 − 2r2u2 + 4r2st+ u4 + 4u2st+ 8rstu. (3.6c)

4. Weighted Pythagorean Triple Preserving Matrices. A Weighted

Pythagorean Triple (WPT) is a triple (x, y, z) of natural numbers such that

p2x2 + q2y2 = p2q2z2 (4.1)

where p and q are two natural numbers. So, a WPT represents the coordinates of

a point X ∈ R
3 which belongs to the quadric Γ : p2x2 + q2y2 − p2q2z2 = 0. The

matrix equation of this quadric is Γ : Xt · S(p, q) ·X = 0 where

X =





x

y

z



 and S(p, q) =





p2 0 0
0 q2 0
0 0 −p2q2



 .

In this section we find the general form of a Weighted Pythagorean Triple

Preserving Matrix (WPTPM) A, i.e., if X ∈ Γ then A · X ∈ Γ. Using the same
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argument as in the first section results in the fact that A is a WPTPM if and only

if there exists a real number ρ such that

At · S(p, q) · A = ρS (p, q) . (4.2)

A straightforward computation leads to the following form of (4.2).







































p2α2
1 + q2β2

1 − p2q2γ2
1 = ρp2

p2α2
2 + q2β2

2 − p2q2γ2
2 = ρq2

p2α2
3 + q2β2

3 − p2q2γ2
3 = −ρp2q2

p2α1α2 + q2β1β2 − p2q2γ1γ2 = 0

p2α2α3 + q2β2β3 − p2q2γ2γ3 = 0

p2α3α1 + q2β3β1 − p2q2γ3γ1 = 0.

(4.3)

With the choice

{

r2 = 1
2q2 [pq (γ3 + qγ1) + p (α3 + qα1)] , s

2 = 1
2q2 [pq (γ3 − qγ1) + p (α3 − qα1)]

t2 = 1
2q2 [pq (γ3 + qγ1)− p (α3 + qα1)] , u

2 = 1
2q2 [pq (γ3 − qγ1)− p (α3 − qα1)]

(4.4)

it follows that the solution

A (r, s, t, u) =







q

2p

(

r2 − t2 − s2 + u2
)

q2

p2 (rs− tu) q2

2p

(

r2 − t2 + s2 − u2
)

rt− su q

p
(ru + st) q (rt+ su)

1
2p

(

r2 + t2 − s2 − u2
)

q

p2 (rs+ tu) q

2p

(

r2 + t2 + s2 + u2
)






.

(4.5)

Also,

ρ =
q2

p2
(ru− st)

2
. (4.6)

Returning to (4.1) with x = qa and y = pb results in a2 + b2 = z2, i.e. (a, b, z)

is a PT and therefore, we have the general form of a WPT.

(x, y, z) =
(

q
(

m2 − n2
)

, 2pmn,m2 + n2
)

. (4.7)
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Finally, consider the system

A (r, s, t, u) ·





q
(

m2 − n2
)

2pmn

m2 + n2



 =





q
(

M2 −N2
)

2pMN

M2 +N2



 (4.8)

with solution

M2 =
q

p
(mr + ns)

2
, N2 =

q

p
(mt+ ns)

2
. (4.9)

This yields the following proposition.

Proposition. The results of this section are true only for the case

q = p · α2 (4.10)

with α a natural number. Then (4.1) becomes

x2 + α4y2 = p2α4z2. (4.11)

Obviously, for p = q = 1 we reobtain the results of the first section.
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Iaşi, 6600, Romania
email: mcrasm@uaic.ro

Institute of Mathematics “Octav Mayer”
Iasi Branch of Romanian Academy
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