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ON THE RATE OF CONVERGENCE FOR

THE CHEBYSHEV SERIES

Kamel Al-Khaled

Abstract. Let f(x) be a function of bounded variation on [−1, 1] and Sn(f ;x)

the nth partial sum of the expansion of f(x) in a Chebyshev series of the second

kind. In this note we give the estimate for the rate of convergence of the sequence

Sn(f ;x) to f(x) in terms of the modulus of continuity of the total variation of f(x).

1. Introduction. Let Un(x) be the Chebyshev polynomial of the second kind

[4]. Let f(x) be a function of bounded variation on [−1, 1] and Sn(f ;x) the nth

partial sum of the expansion of f(x) in a Chebyshev series of the second kind:

∞
∑

n=0

anUn(x)

with

an =
2

π

∫ 1

−1

(1− y2)1/2f(y)
sin(n+ 1) arccosy

sin arccos y
dy, (n = 0, 1, . . . ). (1.1)

According to the equiconvergence theorem for Jacobi series [4], we know that

lim
n→∞

Sn(f ;x) =
1

2

(

f(x+ 0) + f(x− 0)
)

, x ∈ (−1, 1).

In this note we shall find an estimate for the rate of convergence of the sequence

Sn(f ;x) to f(x). Results of this type for Fourier series of 2π-periodic functions of

bounded variation were proved by Bojanic [2].

2. Preliminary Results. Before proving the main theorem we shall state a

preliminary result. Al-Khaled [1] has studied the behavior of Chebyshev series for

functions of bounded variation on [−1, 1] and he proved the following Theorem.
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Theorem 2.1. If f(x) is a function of bounded variation on [−1, 1]. Let

Ax(y) =











f(y)− f(x− 0), −1 ≤ y < x

0, y = x

f(y)− f(x+ 0), x < y ≤ 1.

Then for every x ∈ (−1, 1) and n ≥ 2 we have

∣

∣Sn(f ;x)−
1

2

(

f(x+ 0) + f(x− 0)
)
∣

∣ ≤ 9

n
√
1− x2

[

1

1 + x

n
∑

k=1

V x
x−(1+x)/k(Ax)

+
1

1− x

n
∑

k=1

V x+(1−x)/k
x (Ax)

]

+
4

nπ
√
1− x2

∣

∣f(x+ 0)− f(x− 0)
∣

∣ (2.1)

where V b
aAx is the total variation of Ax on [a, b]. Since Ax(y) is continuous at

y = x, the right-hand side of (2.1) converges to zero. For Theorem 2.1, we can

make a rough estimate.

Corollary 2.2. Under the assumption of Theorem 2.1, we have

∣

∣Sn(f ;x)−
1

2

(

f(x+ 0) + f(x− 0)
)∣

∣ ≤ 18

n(1− x2)3/2

n
∑

k=1

V
x+(1−x)/k
x−(1+x)/k (Ax)

+
4

nπ
√
1− x2

∣

∣f(x+ 0)− f(x− 0)
∣

∣, x ∈ (−1, 1), n ≥ 2. (2.2)

Proof. For the quantities in equation (2.1), we note that

1

1 + x

n
∑

k=1

V x
x−(1+x)/k(Ax) =

1− x

(1− x2)

n
∑

k=1

V x
x−(1+x)/k(Ax)

≤ 2

1− x2

n
∑

k=1

V x
x−(1+x)/k(Ax).
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Similarly,

1

1− x

n
∑

k=1

V x+(1−x)/k
x (Ax) =

1 + x

(1− x2)

n
∑

k=1

V x+(1−x)/k
x (Ax)

≤ 2

1− x2

n
∑

k=1

V x+(1−x)/k
x (Ax).

Combining the above two inequalities we get the required result.

Example 2.1. For a fixed x ∈ (−1, 1), consider a function g of bounded varia-

tion on [−1, 1], i.e.,

g(y) = |y − x|, y ∈ (−1, 1).

Now we have g(x+ 0) = g(x− 0) = g(x) = 0 and Ax(y) = g(y), furthermore,

V x
x−(1+x)/k(Ax) =

1 + x

k
, V x+(1−x)/k

x (Ax) =
1− x

k
,

so, equation (2.1) becomes

∣

∣Sn(g;x)
∣

∣ ≤ 9

n
√
1− x2

(

1

1 + x

n
∑

k=1

1 + x

k
+

1

1− x

n
∑

k=1

1− x

k

)

=
18

n
√
1− x2

n
∑

k=1

1

k
.

But,

n
∑

k=1

1

k
= 1+

1

2
+ · · ·+ 1

n
= lnn+ γ +O(1).

Therefore, by Theorem 2.1 we get an estimate

Sn(g;x)− g(x) = O

(

lnn

n
√
1− x2

)

. (2.3)
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Hereafter, the bounds of the terms “O” are independent of n and x. If we apply

the above corollary from V
x+(1−x)/k
x−(1+x)/k (Ax) = 2/k, we shall obtain another estimate

Sn(g;x)− g(x) = O

(

lnn

n(1− x2)
√
1− x2

)

. (2.4)

Comparing (2.3) with (2.4), we see that when |x| → 1, the estimate (2.3) is more

exact than (2.4).

3. The Main Result. Now we state and prove our main result.

Theorem 3.1. If f(x) is a continuous function of bounded variation on [−1, 1]

and ωv(f)(δ) is the modulus of continuity of the total variation V t
−1(f), then for

x ∈ (−1, 1), n ≥ 2 we have

∣

∣Sn(f ;x)− f(x)
∣

∣ ≤ 9

n
√
1− x2

{

1

1 + x
ωv(f)(1 + x) +

1

1− x
ωv(f)(1− x)

}

+
9

n
√
1− x2

∫ 1

1/n

{

ωv(f)

(

(1 − x)u
)

1− x
+

ωv(f)

(

(1 + x)u
)

1 + x

}

du

u2
, (3.1)

especially, when V t
−1(f) belongs to the class Lip α

(

α ∈ (0, 1)
)

,

Sn(f ;x)− f(x) = O

(

1

nα(1− x2)3/2−α

)

. (3.2)

Further, for the Cesaro mean (c, λ), λ ∈ (0, 1):

σλ
n(f ;x) =

1

(λ)n

n
∑

k=0

(λ− 1)n−kSk(f ;x) (3.3)

where in general

(β)n =
Γ(β + n+ 1)

Γ(β + 1)Γ(n+ 1)
.
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We have also

σλ
n(f ;x)− f(x) = O

(

1

nγ(1− x2)3/2−α

)

, (3.4)

where γ = min{α, 1− λ}.
Proof. Since f(x) is a continuous function, we have Ax(y) = f(y)− f(x), so

V x+(1−x)/k
x (Ax) = V x+(1−x)/k

x (f)− V x
x (f) ≤ ωv(f)

(

1− x

k

)

, 2 ≤ k ≤ n

and

V x
x−(1+x)/k(Ax) ≤ ωv(f)

(

1 + x

k

)

, 2 ≤ k ≤ n

and

V x
−1(Ax) ≤ ωv(f)(1 + x), V 1

x (Ax) ≤ ωv(f)(1− x).

Thus,applying Theorem 2.1, then for x ∈ (−1, 1), n ≥ 2 we obtain

∣

∣Sn(f ;x)− f(x)
∣

∣ ≤ 9

n
√
1− x2

{

1

1 + x
ωv(f)(1 + x) +

1

1− x
ωv(f)(1− x)

}

+
9

n
√
1− x2

{

1

1− x

n
∑

k=2

ωv(f)

(

1− x

k

)

+
1

1 + x

n
∑

k=2

ωv(f)

(

1 + x

k

)}

.

From this and noting that

n
∑

k=2

ωv(f)

(

1− x

k

)

≤
∫ 1

1/n

ωv(f)

(

(1 − x)u
)

u−2du

and

n
∑

k=2

ωv(f)

(

1 + x

k

)

≤
∫ 1

1/n

ωv(f)

(

(1 + x)u
)

u−2du
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we have formula (3.1).

When V t
−1(f) ∈ Lip α (0 < α < 1), we have

ωv(f)

(

(1 − x)u
)

= O
(

(1 − x)αuα
)

and ωv(f)

(

(1 + x)u
)

= O
(

(1 + x)αuα
)

.

From (3.1), we get (3.2). Now by (3.3) and (β)n = O(nβ), we know for x ∈ (−1, 1),

n ≥ 2 that

σλ
n(f ;x)− f(x) =

1

(λ)n

n
∑

k=0

(λ− 1)n−k

(

Sk(f ;x)− f(x)
)

=
1

(λ)n

n−1
∑

k=2

(λ− 1)n−k

(

Sk(f ;x)− f(x)
)

+O(1/n) +O

(

1

nα+λ(1 − x2)3/2−α

)

. (3.5)

According to formula (3.2), we get

1

(λ)n

n−1
∑

k=2

(λ− 1)n−k

(

Sk(f ;x)− f(x)
)

= O

(

1

nλ(1− x2)3/2−α

) n−1
∑

k=2

1

kα(n− k)1−λ
.

(3.6)

Let γ = min{α, 1− λ}. By the inequality

(a+ b)γ ≤ 2γ(aγ + bγ), a > 0, b > 0,
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we see that

n−1
∑

k=2

1

kα(n− k)1−λ
≤

n−1
∑

k=2

1

kγ(n− k)γ

=

n−1
∑

k=2

1

nγ

(

1

k
+

1

n− k

)γ

= O

(

1

nγ

){ n−1
∑

k=2

1

kγ
+

n−1
∑

k=2

1

(n− k)γ

}

= O

(

1

n2γ−1

)

.

From this and (3.5), (3.6), we obtain the formula (3.4). This completes the proof

of Theorem 3.1.

A result of the type of equality in Theorem 3.1 for 2π-periodic continuous

function of bounded variation on [−π, π] was proved by Natanson [3].
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