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DEMOIVRE’S FORMULA TO THE RESCUE

Bella Wiener and Joseph Wiener

1. Introduction. Euler’s formulas

cosx =
1

2

(

eix + e−ix
)

, sinx =
1

2i

(

eix − e−ix
)

(1)

and DeMoivre’s theorem

(cosx+ i sinx)
n
= cosnx+ i sinnx (2)

make an inseparable and elegant team. A few months ago, we spoke on this theme

in San Antonio [1] and it was a real treat to read papers [2] and [3], indeed. Ar-

ticle [3] uses Euler’s formulas to express the integer powers of sine and cosine as

trigonometric polynomials (finite linear combinations of sines and cosines of multi-

ple angles) and thus, to calculate important trigonometric integrals. In fact, a lot

of earlier works, including [4] and [5], accomplished the same act and, we trust, the

method has fascinated us since the times of Euler and Laplace. Then, why don’t

our calculus texts accept this technique of renowned experts? The reason, in our

opinion, is quite clear: Euler’s formulas look very nice and sleek, but their theory

is both complex and deep.

In this connection, let us quote what the Monthly editorial [6] once wrote:

“Judging from the volume of mail addressed to Classroom Notes it appears that

one of the greatest mysteries of undergraduate mathematics is the equation of Euler

eix = cosx+i sinx. The objective of these correspondents is to develop this formula

without the use of infinite series; and judging from the desperate devices employed

by these writers in seeking to attain this end, it is highly desirable that a rigorous

simple proof of this formula be available . . . . The first point to be emphasized

is that the expression eix has to be defined, and that certain properties must be

ascribed to it. Otherwise any proof falls to the ground. Rigorous treatments of this

appear in the classical literature; for example, see G. H. Hardy, Pure Mathematics,

p. 409 (fifth edition), or E. T. Whittaker and G. N. Watson, Modern Analysis, p.

581 (fourth edition). Since these have more general objectives in view it may be

complained that they are too complicated for the purpose of defining the relatively

simple expression eix. If, on the other hand, one wishes simplicity, he may directly
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define eix to be the expression cosx + i sinx. This would settle the whole matter,

but such a definition is unsatisfactory on intuitive grounds and appears to be drawn

out of the air. It is hoped that the following definition is satisfactory on all three

grounds: rigor, simplicity, and intuition: eix is a complex valued function of the

real variable x having the properties ei0 = 1; deix/dx = ieix.” A theorem is then

proved that

eix = cosx+ i sinx.

This report illuminates the longstanding dilemma on the place of Euler’s formulas

in elementary calculus: they are tempting to use and impossible to prove. In the

calculus books, they are derived by formally replacing x with the complex variable

ix
(

i =
√

−1
)

in the power series of the exponential function and comparing it with

the series for cosx and sinx. But wait, for the integration techniques it’s a bit too

late.

The purpose of this paper is to extend the ideas and results of note [7] and to

show that DeMoivre’s theorem (which is part of a standard trigonometry course)

can do more than Euler’s formulas, not less, with a higher degree of success. The

proof of the theorem is simple: by cosine and sine of the sum formulas, the product

of two complex numbers

z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2)

is found to be

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] ,

and this result extends to any number of terms. In the case when each of the n

factors equals

z = r (cos θ + i sin θ) ,

their product becomes

zn = rn (cosnθ + i sinnθ) , (3)

which is the well–known DeMoivre formula.

2. Integrating Powers of Sine and Cosine. Integrals of even powers of

sine and cosine are notoriously difficult, and most texts approach them either by

the half-angle identities for cos2 x and sin2 x or via reduction formulas. DeMoivre’s

theorem allows closed formulas for those integrals to be derived quite easily. Let

z = cosx+ i sinx; (4)
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then

1

z
= cosx− i sinx, (5)

and therefore,

cosx =
1

2

(

z +
1

z

)

, sinx =
1

2i

(

z −
1

z

)

. (6)

Applying the binomial formula to (6) gives

cosm x =
1

2m

m
∑

k=0

(

m

k

)

zm−k
(

z−1
)k

=
1

2m

m
∑

k=0

(

m

k

)

zm−2k

and

sinm x =
1

(2i)
m

m
∑

k=0

(

m

k

)

(−1)
k
zm−2k.

From DeMoivre’s formula (2) it follows that

zm−2k = cos (m− 2k)x+ i sin (m− 2k)x,

which transforms the latter equations into

cosm x =
1

2m

m
∑

k=0

(

m

k

)

cos (m− 2k)x+
i

2m

m
∑

k=0

(

m

k

)

sin (m− 2k)x (7)

and

sinm x =
1

(2i)
m

m
∑

k=0

(

m

k

)

(−1)k cos (m− 2k)x

+
i

(2i)
m

m
∑

k=0

(

m

k

)

(−1)k sin (m− 2k)x. (8)
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It remains to consider the following two cases.

Case 1: m = 2n is even.

Note that the left–hand part of (7) is real and therefore,

cos2n x =
1

4n

2n
∑

k=0

(

2n

k

)

cos (2n− 2k)x.

Since

(

2n

k

)

cos (2n− 2k)x+

(

2n

2n− k

)

cos (2k − 2n)x = 2

(

2n

k

)

cos (2n− 2k)x

and cos (2n− 2n)x = 1, then

cos2n x =
1

4n

[

(

2n

n

)

+ 2
n−1
∑

k=0

(

2n

k

)

cos (2n− 2k)x

]

.

Finally, the substitution j = n− k changes this formula to

cos2n x =
1

4n





(

2n

n

)

+ 2

n
∑

j=1

(

2n

n− j

)

cos 2jx



 . (9)

Similarly, since i2n = (−1)
n
, equation (8) leads to the expansion

sin2n x =
1

4n





(

2n

n

)

+ 2

n
∑

j=1

(

2n

k

)

(−1)
j
cos 2jx



 . (10)
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From here,

∫

cos2n x dx =
1

4n





(

2n

n

)

x+
n
∑

j=1

1

j

(

2n

n− j

)

sin 2jx



+ C (11)

and

∫

sin2n x dx =
1

4n





(

2n

n

)

x+

n
∑

j=1

(−1)
j

j

(

2n

n− j

)

sin 2jx



+ C. (12)

Case 2: m = 2n+ 1 is odd.

Applying to (7) the previous technique yields at once the result

cos2n+1 x =
1

4n

n
∑

j=0

(

2n+ 1

n− j

)

cos (2j + 1)x. (13)

On the other hand, for odd m, the first term on the right of (8) is imaginary and

the second is real. Hence,

sin2n+1 x =
1

2 · 4n

2n+1
∑

k=0

(

2n+ 1

k

)

(−1)
n−k

sin (2n+ 1− 2k)x.

Again, we collect the equal terms corresponding to indices k and 2n + 1 − k and

obtain the formula

sin2n+1 x =
1

4n

n
∑

j=0

(

2n+ 1

n− j

)

(−1)
j
sin (2j + 1)x. (14)

Equations (13) and (14) produce the integrals

∫

cos2n+1 x dx =
1

4n

n
∑

j=0

1

2j + 1

(

2n+ 1

n− j

)

sin (2j + 1)x+ C (15)
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and

∫

sin2n+1 x dx =
1

4n

n
∑

j=0

(−1)
j+1

2j + 1

(

2n+ 1

n− j

)

cos (2j + 1)x+ C. (16)

3. Examples and Remarks. Wallis’s formulas

∫ π/2

0

cos2n x dx =

∫ π/2

0

sin2n x dx =
(2n)!

4n (n!)2
·
π

2
(17)

follow at once from (11) and (12) by taking the integrals between 0 and π/2. In

[8], formulas (17) were obtained by differentiating the integral

∫

∞

0

dy

y2 + p
=

π

2
p−1/2, p > 0

n times with respect to p and letting p = a2, y = a tanx. Conversely, the difficult

indefinite integral of
(

y2 + 1
)

−n−1
is reduced by the substitution y = tanx to the

integral of cos2n x. The antiderivatives of cos2k x sin2m x can be transformed to

forms (11) or (12) by means of the identity sin2 x + cos2 x = 1. For the integrals

of cos2k+1 x sin2m x dx and cos2k x sin2m+1 x dx, the substitutions u = sinx and

u = cosx, respectively, are simpler and more efficient than DeMoivre’s or Euler’s

formulas. DeMoivre’s theorem can also be used to find closed expressions for certain

sums involving the binomial coefficients.

Example. Writing the complex number 1 + i in trigonometric form

1 + i =
√

2
(

cos
π

4
+ i sin

π

4

)

,

and applying DeMoivre’s formula gives

(1 + i)
n
= 2n/2

(

cos
πn

4
+ i sin

πn

4

)

.
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On the other hand, by the binomial development,

(1 + i)
n
= 1 +

(

n

1

)

i−

(

n

2

)

−

(

n

3

)

i+

(

n

4

)

+

(

n

5

)

i− · · · ,

and equating the corresponding real and imaginary parts in the latter equations

yields the identities

1−

(

n

2

)

+

(

n

4

)

−

(

n

6

)

+ · · · = 2n/2 cos
πn

4
(18)

and

(

n

1

)

−

(

n

3

)

+

(

n

5

)

−

(

n

7

)

+ · · · = 2n/2 sin
πn

4
. (19)

Furthermore, adding and subtracting the expansions

2n = (1 + 1)
n
= 1 +

(

n

1

)

+

(

n

2

)

+

(

n

3

)

+ · · ·

and

0 = (1− 1)
n
= 1−

(

n

1

)

+

(

n

2

)

−

(

n

3

)

+ · · ·

shows that

1 +

(

n

2

)

+

(

n

4

)

+

(

n

6

)

+ · · · = 2n−1 (20)

and

(

n

1

)

+

(

n

3

)

+

(

n

5

)

+

(

n

7

)

+ · · · = 2n−1. (21)
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Combining (18) with (20) and (19) with (21) generates not so trivial combinatorial

identities

1 +

(

n

4

)

+

(

n

8

)

+

(

n

12

)

+ · · · =
1

2

(

2n−1 + 2n/2 cos
πn

4

)

(22)

and

(

n

1

)

+

(

n

5

)

+

(

n

9

)

+

(

n

13

)

+ · · · =
1

2

(

2n−1 + 2n/2 sin
πn

4

)

. (23)

In conclusion, we want to emphasize once more that formula (6) does not

assume that z = eix, and their derivation uses solely the idea that the reciprocal of

the complex number z = cosx+ i sinx is equal to its conjugate.
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