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GENERALIZED INVOLUTIONS ON BANACH SPACES

Manolis Magiropoulos

Abstract. We introduce generalized involutive operators on Banach spaces,

based on the notion of a spectral family.

1. Introduction. In [7], among others, involutive operators of arbitrary

order m, on a Banach space X , are examined (i.e. operators T :X → X , such that

Tm = I for a positive integer m); it is proved that T =
∑m

j=1 zjPj , where {zj} is

the set of the m roots of 1, and Pj are projections on X such that PkPj = 0 for

k 6= j and
∑m

j=1 Pj = I. Thus, it is concluded that involutive operators are scalar

on X (i.e. there exists a spectral measure µ(·) on X such that T =
∫

R
λdµ(λ)).

The above result can be derived immediately as an application of Proposition

10.6 in [4], can serve as a motivation to examine structural features of a slightly

more general version of these operators, namely when {zj} is an arbitrary finite

subset of the unit circle. For evident reasons we call these (scalar) operators gen-

eralized involutive (g.i.) on X . There are two ways of spectrally classifying these

operators; by use of a spectral measure or through the concept of a spectral family

of projections. We shall follow the second approach. In Section 2 we characterize

these operators as trigonometrically well-bounded deriving their spectral decom-

position. (All pertinent theoretical tools are presented later on.) Similar results

appear in Section 3 by constructing a normalized logarithm for g.i. operators, and

by explicitly calculating also the corresponding “ergodic” operators following the

formulas of the abstract setting of [2].

We present now, in brief, an account of the basic concepts and results needed

throughout. By the term “operator on X” we will always refer to a bounded linear

transformation with domain a (complex) Banach space X and range in X . We

denote by B(X) the algebra of all operators on X and the prefix “s” denotes the

strong topology of B(X). We take for granted the basic theory concerning spectral

measures on Banach spaces. Supplementary theory concerning our machinery can

also be found in [1,2,4].

Definition 1.1. A spectral family in X is a uniformly bounded projection

valued-function E(·):R → B(X) which is s-right continuous on R, has an s-left

limit on R and satisfies: (i) E(λ)E(µ) = E(µ)E(λ) = E(λ) for all λ, µ in R with

λ ≤ µ (ii) s-limE(λ) = I (resp. 0) as λ → +∞ (resp. → −∞).
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If there is a compact [a, b] ⊂ R such that E(λ) = 0 for λ < a, E(λ) = I for

λ ≥ b, we say that E(·) is concentrated on [a, b]. A theory of integration (in the

Riemann-Stieltjes sense) with respect to spectral families is described in full detail

in [4]. In particular for J = [a, b] and f in BV (J) we can define
∫

J
fdE as an s-limit

of sums, where the intermediate point in each partitioning subinterval is taken to

be the right-end point of the subinterval. If, in addition, f is continuous on J , we

can use arbitrary intermediate points [4].

The next definition is an equivalent characterization for a class of operators in

B(X), that does not involve (directly) the original description (via the functional

calculus introduced in [5] and [6]); it makes use of the integral previously defined.

Let us introduce the symbol
∫ ⊕

J
fdE to describe the expression f(a)E(a)+

∫

[a,b]
fdE

[1].

Definition 1.2. Let T in B(X). T shall be called well-bounded of type (B), if

there exists a compact interval J ⊂ R and a spectral family E(·) concentrated on

J such that

T =

∫ ⊕

J

λdE(λ).

(In this case E(·) is unique and is called the spectral family of T .)

We next define a class of operators that lies in the core of our considerations.

We use again an equivalent reformulation of the original definition, convenient for

our purposes.

Definition 1.3. An operator T in B(X) shall be called trigonometrically well-

bounded if it can be expressed as

T =

∫ ⊕

[0,2π]

exp(iλ)dE(λ),

where J = [0, 2π] and E(·) a spectral family concentrated on J .

Remark. We can always arrange, in Definition 1.3, E(2π−) = I and then E(·)

is uniquely determined and shall be simply called the spectral decomposition of T .

The next “multi-theorem” provides a convenient characterization for trigono-

metrically well-bounded operators, as well as the ground for constructing their

“normalized” logarithm and the spectral families in both cases; it is a blending of
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results in [1] and [2] and it completes the main bulk of the theory needed through-

out.

Theorem 1.4. Let T be in B(X). Then

(i) T is trigonometrically well-bounded if and only if T = exp(iS), for a well-

bounded operator S of type (B) on X .

(ii) If T is trigonometrically well-bounded, then there is a (unique) well-bounded

operator A of type (B) on X , such that T = eiA, σ(A) ⊂ [0, 2π] and 2π is not

in the point spectrum of A. (Notation A = Arg T , argument of T .)

(iii) If T and A are as in (ii), then the spectral decomposition of T coincides with

the spectral family of A.

(iv) If T is as in (ii) and it is also “power-bounded” on a reflexive Banach space

X , i.e. sup{‖T n‖ : n ∈ Z} < ∞, then the argument of T is given by

Arg T = πI − πQ0 + iB0,

where

Q0 = s− lim
n

1

n

n−1
∑

k=0

T k and B0 = s− lim
n

n
∑

k=−n

′T
k

k

exist in B(X) (and the “superscript prime” for the second series indicates

omission of n = 0).

(v) If T is trigonometrically well-bounded and power-bounded on a reflexive Ba-

nach space X , then the spectral decomposition of T is given by

E(λ) =
1

2πi
{iλI −Bλ +B0}+

1

2
{Qλ +Q0} for 0 ≤ λ < 2π,

where

Qλ = s− lim
n

1

n

n−1
∑

k=0

exp(−ikλ)T k

and

Bλ = s− lim
n

n
∑

k=−n

′ exp(−ikλ)
T k

k
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are (automatically) in B(X).

Remarks. 1) In Theorem 1.4(v) the reflexivity of X is used in order to ensure

that Qλ is in B(X) (by use of the theory of V.III.5 in [3]); since for g.i. operators

we can easily check – which actually we will see later – that this is true on any

Banach space, we have not required reflexivity (see Lemma 3.1). 2) In case X is

a Hilbert space, we see that g.i. operators on X are simply unitary on X (the

corresponding projections taken as self-adjoint). This is not accidental. In fact,

any power-bounded operator on a Hilbert space is similar to a unitary operator on

the same space, and certainly our operators are power-bounded since

T k =

m
∑

j=1

zkj Pj

and thus,

sup{‖T k‖ : k ∈ Z} ≤

m
∑

j=1

‖Pj‖ < ∞.

(Scholium: The above mentioned remarkable feature of power bounded opera-

tors on a Hilbert space – which is a consequence of deep theorems due to Sz-Nagy

has also a rather elementary proof (e.g. see J.A. Van Casteren’s “Generators of

Strongly Continuous Semigroups,” Research Notes in Mathematics, No. 115, Pit-

man, 1985)).

2. G.I. Operators as Trigonometrically Well-Bounded Operators.

Throughout this section let

T =

m
∑

j=1

zjPj ,

for an arbitrary but fixed positive integer m; to avoid unnecessary fiddling, we shall

assume T 6= I (i.e. we shall avoid the case m = 1, z1 = 1).

Note that if T = I its spectral decomposition is 0 for λ < 0 and I for λ ≥ 0.
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Now let θj be the principal argument of zj in [0, 2π). Based on the theory of

integration with respect to a spectral family is not hard to guess that the natural

candidate for the spectral decomposition of T is given by

E(λ) =
m
∑

θj≤λ

Pj , for each λ ∈ R, (∗)

where the lower index symbolism indicates summation with respect to all j, 1 ≤

j ≤ m, such that θj ≤ λ (with the convention
∑

∅ = 0).

Remark. By definition, it is evident that E(λ) = 0 for λ < 0 and E(λ) = I for

λ ≥ 2π.

The two lemmas which follow will demonstrate that the above claim for the

spectral decomposition of T is true. We shall denote convergence with respect to

the uniform topology of B(X) by “u”.

Lemma 2.1. The function E(·) defined on R via (∗) is a spectral family (con-

centrated on [0, 2π]).

Proof. Evidently, each E(λ) is a projection on X , and since

sup
λ

‖E(λ)‖ ≤

m
∑

j=1

‖Pj‖ < ∞,

they form a uniformly bounded family on R. Property (i) of Definition 1.2 is

immediate by the properties of the Pj ’s and (ii) is a direct consequence of the

preceding remark (and it actually holds in the u-sense). We now need only to

demonstrate s-right continuity and existence of the s-left hand limit of E(λ) at

each λ in R. For a simpler notation we do that by showing, respectively,

(a) u− lim
ǫ→0+

E(λ+ ǫ) = E(λ)

and

(b) u− lim
ǫ→0+

E(λ− ǫ) =
∑

θj<λ

Pj .
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For (a) it is enough to observe that if ǫ > 0, then

E(λ + ǫ)− E(λ) =
∑

λ<θj≤λ+ǫ

Pj

−→

ǫ→0+

∑

∅

= 0.

Similarly working for (b), we have

E(λ− ǫ) = E(λ)−
∑

λ−ǫ<θj≤λ

Pj

−→

ǫ→0+
E(λ)−

∑

θj=λ

Pj =
∑

θj<λ

Pj .

Lemma 2.2. For T as before and E(·) defined via (∗), we have

T =

∫ ⊕

[0,2π]

exp(iλ)dE(λ)

(as a strong, and in fact, uniform limit of Riemann-Stieltjes sums).

Proof. It is enough to show that

T = u− lim
φ

{

E(0) +

n
∑

k=1

exp(iλk)(E(λk)− E(λk−1))

}

,

over all partitions φ = {λ0, . . . , λn} of [0, 2π].

Note at first that E(0) corresponds to 0 if zj 6= 1 for all j, and to Pj0 if zj0 = 1

for some (unique) 1 ≤ j0 ≤ m. Observe next that

n
∑

k=1

exp(iλk)(E(λk)− E(λk−1)) =

n
∑

k=1

exp(iλk)

(

∑

λk−1<θj≤λk

Pj

)

.

Since

max
1≤k≤n

|λk − λk−1|
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becomes very small as n becomes large, then

∑

λk−1<θj≤λk

Pj

is either 0 or Pj0 (whenever θj0 = λk), and the result follows.

We summarize the results of the two lemmas in the following theorem.

Theorem 2.3. Let

T =

m
∑

j=1

exp(iθj)Pj ,

for a (fixed) m ≥ 1, where θj are distinct in [0, 2π) and Pj are projections on a

(fixed) Banach space X , such that PkPj = 0 for k 6= j and

m
∑

j=1

Pj = I (the identity on X).

Then (i) T is trigonometrically well-bounded on X , and its spectral decomposition

is given by

E(λ) =
∑

θj≤λ

Pj , for each λ in R.

(ii) T possesses as argument the operator

A =

m
∑

j=1

θjPj whose spectral family is E(·).

Proof. (i) We need only to check that E(2π−) = I, and appeal to the remark

following Definition 1.3.

(ii)

∫ ⊕

[0,2π]

λdE(λ) = Arg T
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by Definition 1.2, Definition 1.3, Theorem 1.4 (ii)–(iii), and the result in (i).

Repeating verbatim the proof of Lemma 2.2, we see that

u−

∫ ⊕

[0,2π]

λdE(λ) =

m
∑

j=1

θjPj .

Remark. It is natural at this point to set the question of constructing the

spectral decomposition of T (or of the argument of T ), without departing from an

intuitive observation. First note that for detecting Arg T , an alternative approach

could have been the following. Let

A =

m
∑

j=1

θjPj .

We easily check that T = exp(iA) and σ(A) ⊂ [0, 2π], since σ(A) = {θj : 1 ≤

j ≤ m}. To check that A is well-bounded of type (B) without of course involving

the previous construction of E(λ), we can appeal to the equivalent definition in [1]

involving a (weakly compact) AC([0, 2π]) functional calculus.

The next section reveals how, by rather elementary calculations that involve

classical Fourier series we can reproduce, using the formula of Theorem 1.4 (iv)–(v),

the results of Section 2.

3. The Construction of the Argument and the Spectral Decomposi-

tion of G.I. Operators. Set

A =

m
∑

j=1

θjPj .

Since T = exp(iA) and A is well-bounded of type (B), we conclude that T is

trigonometrically well-bounded without appealing to the results of the lemmas in

Section 2. Since T is also power-bounded, Theorem 1.4 (iv)–(v) is applicable. We

(temporarily) fix λ in R and proceed to calculate the operators Qλ, Bλ, in the
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subsequent lemma. For notational convenience, we set Pj,λ to be 0 if θj 6= λ and

Pj0 if θj0 = λ, for a (unique) j0, (1 ≤ j0 ≤ m).

We also denote by E(λ) the operator

∑

θj≤λ

Pj .

Lemma 3.1. Let T be as in Section 2. Then the operators Qλ and Bλ defined

in Theorem 1.4 (v) have the following representation, for any λ in R.

(i) Qλ = Pj,λ

(ii) Bλ = i
{

(λ+ π)I + πPj,λ − 2πE(λ)−A
}

.

Proof. (i) It is immediate that

Qλ =

m
∑

j=1

ωjPj ,

where

ωj = lim
n

ωnj , ωnj =
1

n

n−1
∑

k=0

exp(ik(θj − λ)).

Evidently,

ωnj =

{

1, if θj = λ
1
n

{

1− exp(i(θj − λ))
}

, if θj 6= λ,

and thus,

ωnj =

{

1, if θj = λ

0, otherwise.
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(ii) Similarly, due to the symmetric summation, we can easily see that

Bλ =
m
∑

j=1

δjPj ,

where

δj = s− lim
n

2i

n
∑

k=1

sink(θj − λ)

k
= 2is− lim

n

n
∑

k=1

sink(θj − λ)

k
.

Based on the classical formula for the Fourier series of

π − θ

2

for 0 < θ < 2π, we can easily see that

δj =











0, for 0 ≤ λ = θj < 2π

i(λ− θj + π), for λ < θj < 2π

i(λ− θj − π), for 0 ≤ θj < λ.

We conclude that Bλ = λ(I − Pj,λ − (A − λPj,λ)− π(E(λ) − Pj,λ) + π(I − E(λ)),

and the result follows.

Theorem 3.2. Let T be an operator as in Theorem 2.3. Then this trigonometri-

cally well-bounded operator has an argument, Arg T , and a spectral decomposition,

F (·), such that

(i) Arg T = A

(ii) F (λ) = E(λ) for each λ in R.

Proof.

(i) Theorem 1.4 (iv) implies Arg T = πI − πPj,0 − (πI − πPj,0 − A) = A, since

E(0) = Q0 = Pj,0.
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(ii) F (λ) = E(λ) for λ < 0 or λ ≥ 2π is immediate, since F (·) is concentrated on

[0, 2π] and E(·) behaves, by construction, in a similar way. Now let 0 ≤ λ < 2π.

Then by Theorem 1.4 (v),

F (λ) =
1

2πi

{

iλπI −Bλ + B0

}

+
1

2

{

Qλ +Q0

}

.

Substituting Bλ and B0 as given in Lemma 3.1 (ii) we can easily obtain the

announced equality.
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