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PRIMITIVE HEREDITY IDEALS

Darren D. Wick

Abstract. Let R be a left Artinian ring. Dlab and Ringel have shown that
R is hereditary if and only if every chain of idempotent ideals can be refined to a
heredity chain [1]. In particular, if R is a basic hereditary ring, then every primitive
ideal is a heredity ideal. The converse to this is clearly false. (See Example 1). We
will introduce a class of rings that includes serial rings and monomial algebras, for
which the converse does hold.

Throughout this paper, R will be a basic left Artinian ring (with unity) with
a basic set of primitive idempotents τ = {e1, . . . , en} and with J the Jacobson
radical of R. We will refer to ideals ReiR as primitive ideals. If M is an R-module,
we denote the Loewy length of M by L(M), and the composition length of M by
c(M).

Recall that an ideal I of R is heredity if I2 = I, RI is projective, and IJI = 0.
The ring R is quasi-hereditary if there exists a chain of ideals,

0 = I0 ⊂ I1 ⊂ · · · ⊂ Il = R,

called a heredity chain, such that Ik/Ik−1 is a heredity ideal in R/Ik−1 for each
k = 1, . . . , l [1,2]. If I is an idempotent ideal of R, then I = ReR for some
idempotent e in R. Moreover, e may be taken to have the form e = e1+ · · ·+ ek for
some k ≤ n and a suitable ordering of τ [2]. Furthermore, if I = R(e1 + · · ·+ ek)R
is a heredity ideal, then each ideal ReiR, i = 1, . . . , k, is again a heredity ideal of
R [2]. Thus, [2] with a suitable ordering of τ , any heredity chain can be refined to
a heredity chain of the form

0 ⊂ Re1R ⊂ R(e1 + e2)R ⊂ · · · ⊂ R(e1 + · · ·+ en−1)R ⊂ R.

Dlab and Ringel have shown that R is hereditary if and only if every chain of
idempotent ideals can be refined to a heredity chain [1]. We first consider the trace
of projective left modules in the radical of the ring R. If Re is projective, then
ReJ = TrJ(Re). Note that ReJ is the right radical of the idempotent ideal ReR.

Lemma 1. Let ReR be a primitive ideal. The following are equivalent.
(a) ReR is a heredity ideal.
(b) ReJ is a projective left R-module.
(c) For each i = 1, . . . , n, TrJei(Re) is either zero or isomorphic to a direct sum

of copies of Re.
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Proof. We may assume e = e1. For any module RN , Re1N = TrN (Re1).
Thus, the equivalence of (b) and (c) follows immediately from the direct sum de-
composition

Re1J = ⊕n
i=1Re1Jei = ⊕n

i=1Tr Jei(Re1).

Since R is basic, Re1Rei = Re1Jei for i = 2, . . . , n. Hence, we have the decompo-
sition

Re1R = ⊕n
i=1Re1Rei

= Re1 ⊕ (⊕n
i=2Re1Jei)

= Re1 ⊕ (⊕n
i=2TrJei(Re1)).

Assume condition (c). From this last decomposition we have that Re1R is
a direct sum of copies of Re1 and is therefore projective. If Re1Je1 6= 0, then
1 ≤ c(Re1Je1) ≤ c(Je1) < c(Re1), and thus, Re1Je1 cannot be isomorphic to a
direct sum of copies of Re1. Hence, we must have Re1Je1 = 0 and Re1R is heredity.

To see that (a) implies (b) it suffices to observe that if Re1R is heredity, then
we have that TrJe1(Re1) = Re1Je1 = 0.

Dlab and Ringel have shown that the notion of a heredity ideal (and thus the
notion of a quasi-hereditary ring) is two-sided. That is, if I is a heredity ideal of R,
then I is also projective as a right R-module [1]. Thus, there exists a corresponding
version of Lemma 1 for right R-modules. In particular, we have the following
corollary.

Corollary 1. For a primitive idempotent e in R, RReJ is projective if and only
if JeRR is projective.

Note that a primitive ideal ReR which is projective as a left R-module is not
a heredity ideal if and only if eJe 6= 0. Moreover, if eJe 6= 0, then 1 ≤ c(ReJe) ≤
c(Je) < c(Re) so that ReJe 6= 0 and ReJe (and thus, ReJ) is not projective. Thus,
we have the following result.

Corollary 2. A primitive ideal ReR is heredity if and only if both RReJ and
JeRR are projective modules.

In particular, if ReR is a primitive heredity ideal, then RReJ (JeRR) is a
direct sum of local left (right) ideals. However, for J to be a direct sum of local
left ideals, it does not suffice that each primitive ideal of R be heredity. Consider
the following example.
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Example 1. Let k be a field and consider the incidence algebra of the poset.

The indecomposable projective left R-modules have diagrams:

1 2 3 4
1 1 2 3

1

Notice that lgldim R = 2 so that R is quasi-hereditary but not left hereditary.
It is clear that the primitive ideals ReiR (1 ≤ i ≤ 4) are heredity ideals. It is also
clear that J is not a direct sum of local left ideals. Observe thatR(e2+e3)R/Re2R is
not a projective left R/Re2R-module and that R(e2+e3)R/Re3R is not a projective
left R/Re3R-module. Hence, the chain of idempotent ideals 0 ⊂ R(e2 + e3)R ⊂ R
cannot be refined to a heredity chain.

In Example 1, we see that if e is a primitive idempotent, then ReJ is a direct
sum of local left ideals of R. However, the trace in J of the decomposable projective
module R(e2 + e3) is neither local, nor a direct sum of local left ideals.

We will use the following characterization of tree subsets due to Burgess, Fuller,
Green, and Zacharia [3].

Proposition 1. (Burgess, Fuller, Green, and Zacharia) Let m = L(R). Let
X be a subset of R \ {0} such that X = ∪n

i=1eiX and if x, y ∈ X with x 6= y
then Rx 6= Ry. Then, X is a tree subset for R if and only if X can be written
X = Y0 ∪ · · · ∪ Ym−1 so that R = ⊕y∈Y0Ry; and for each l, 1 ≤ l ≤ m − 1, and
x ∈ Yl−1, there are subsets Ylx ⊆ Yl so that Yl = ∪x∈Yl−1

Ylx and Jx = ⊕y∈Ylx
Ry.

Moreover, under these conditions, J l = ⊕y∈Yl
Ry for l = 1, . . . ,m− 1.

Theorem 1. The following are equivalent.
(a) Jk is a direct sum of local left ideals for all k = 1, . . . , L(R)− 1.
(b) ReJk is a direct sum of local left ideals for all k = 1, . . . , L(R)− 1 and for all

idempotents e ∈ R.
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(c) There exists a tree subset for the regular module RR.

Proof.

(a ⇔ c) This follows from Corollary 1.3 in [3].

(b ⇒ a) By hypothesis, R · 1 · Jk = Jk is a direct sum of local left ideals for
each k = 1, . . . , L(R)− 1.

(c ⇒ b) Suppose there exists a tree subset X = Y0 ∪ · · · ∪ YL(R)−1 for RR. Let
e be an idempotent in R and let x ∈ X . We claim that ReRx is either zero or a
direct sum of local left ideals. To prove this, we induct on l = L(Rx).

l = 1: In this case Rx is semisimple so that ReRx is either zero or semisimple.
l > 1: We first note that x 6∈ YL(R)−1. Since x = eix for some basic idempotent

ei, Rx is a local left ideal of R. Thus, if ReRx = Rx we are done. Suppose ReRx 6=
Rx. Then ReRx ⊂ Jx and therefore ReRx = ReJx. But, Jx = ⊕y∈Y(l+1)x

Ry by
Proposition 1. For y ∈ Y(l+1)x, Ry ⊂ Jx so that L(Ry) < L(Rx). Thus, by
induction, ReRy is either zero or a direct sum of local left ideals. Thus, ReRx =
ReJx = ⊕y∈Y(l+1)x

ReRy is either zero or a direct sum of local left ideals.

Let 1 ≤ k ≤ L(R) − 1. Then by Proposition 1, Jk = ⊕x∈Yk
Rx. Thus,

ReJk = ⊕x∈Yk
ReRx is either zero or a direct sum of local left ideals.

Now, the existence of a tree subset for the regular module RR is a defining
property of left monomial rings [3]. Thus, we have the following examples of rings
satisfying the conditions of Theorem 1 [3].

Example 2. The following rings satisfy the conditions of Theorem 1.
(a) Left monomial rings.
(b) Left serial rings.
(c) Monomial algebras.
(d) Left hereditary left Artinian rings.
(e) Left Artinian rings with J2 = 0.

Recall that a ring R is l-hereditary if for every two indecomposable projective
R-modules P and Q, every non-zero homomorphism h:P → Q is monic [4]. We
note that l-hereditary rings are quasi-hereditary [2]. As was shown by Burgess and
Fuller, if ReR is a primitive heredity ideal, then every non-zero homomorphism
h:Re → R is monic [2]. Hence, if every primitive ideal is heredity, R is l-hereditary.
Conversely, suppose that R is l-hereditary and ReR a primitive ideal. Then any
non-zero homomorphism h:Re → Re is monic. Thus, eJe ⊂ ReJe = TrJe(Re) = 0.
However, it is easy to see that not every primitive ideal in an l-hereditary ring is a
heredity ideal. Consider the following example.
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Example 3. Let Γ be the digraph

1

a
−→
b
−→

2

c
−→
d
−→

3.

Let k be a field and let R = kΓ/I, where I = (cb− da). Then the indecompos-
able projective left R-modules have diagrams as follows.

1 2 3
2 2 3 3

3 3 3

Notice that RRe2R = Re2 ⊕ Je1, and Je1 = Re2Je1 = TrJe1 (Re2). Since
c(Je1) = 5 and c(Re2) = 3, we see that Je1 (and hence, RRe2R) is not projective.
Thus, R is not a left hereditary ring. We claim that R is l-hereditary. To see
this, it will suffice to show that any non-zero homomorphism h:Re2 → Je1 is
monic. But any such homomorphism h is given by right multiplication by some
x = e2xe1 ∈ e2Je1 = 〈a, b〉. Thus, x = αa+ βb for some α, β ∈ k.

Now, Re2 = 〈e2, c, d〉. Suppose λ1e2+λ2c+λ3d ∈ Ker (h), with λ1, λ2, λ3 ∈ k.
Then, 0 = h(λ1e2 + λ2c+ λ3d) = λ1αa+ λ1βb + λ2αca+ (λ3α+ λ2β)da+ λ3βdb.
If either α 6= 0 or β 6= 0, we see that λi = 0 for i = 1, 2, 3. Thus, h is monic and R
is l-hereditary.

The rings in Examples 1 and 3 are l-hereditary rings which are not left hered-
itary. We will show that under conditions weaker than those of Theorem 1, the
notions of l-hereditary and left hereditary are the same.

Theorem 2. Suppose that J is a direct sum of local left ideals. Then the
following are equivalent.
(a) R is left hereditary.
(b) R is l-hereditary.
(c) Every primitive ideal of R is a heredity ideal.

Proof.

(a ⇒ b) This is clear.

(b ⇒ c) Let R be l-hereditary and let I = ReiR be a primitive ideal of R. As
we have seen, if R is l-hereditary then eJe = 0 for every primitive idempotent e.
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Thus, it will suffice to show that RI is projective. For j 6= i, we have ReiRej =
TrRej (Rei) = ReiJej. Thus,

ReiR =

n⊕

j=1

ReiRej = Rei ⊕
⊕

j 6=i

ReiJej .

Now, each non-zero ReiJej is a direct sum of local left ideals of the form Im (ρx),
where the homomorphism ρx:Rei → Jej is given by right multiplication by x. By
assumption, ρx is monic and thus, ReiR is projective.

(c ⇒ a) Assume that every primitive ideal is heredity. Recall that R is left
hereditary if and only if Jek is projective for each k, 1 ≤ k ≤ n [5].

Let 1 ≤ k ≤ n. Since J = ⊕n
i=1Jei is a direct sum of local left ideals, Jek =

⊕l
j=1Lj for some collection L1, . . . , Ll of local left ideals. Let 1 ≤ i ≤ l and consider

the local left ideal Li. Assume Li has projective cover Ret. Notice that t 6= k since
RekJek = 0. Since RetR is heredity, RetRek = RetJek is a direct sum of copies of
Ret. But RetJek = ⊕l

j=1RetLj and hence, RetLi = TrLi
(Ret) = Li is isomorphic

(by Krull-Schmidt) to a copy of Ret. Thus, Li is projective and R is left hereditary.

Since the radical of a left hereditary ring is necessarily a direct sum of local
left ideals, we also have the following result.

Corollary 3. Suppose R is l-hereditary. Then, R is left hereditary if and only
if J is a direct sum of local left ideals.

Suppose J is a direct sum of local left ideals. We then have the following
dichotomy of the left global dimensions of such rings R with the property that each
primitive ideal is a projective left R-module.

Corollary 4. If J is direct sum of local left ideals and each primitive ideal is
projective as a left R-module, then either R is left hereditary or lgldim R = ∞.

Proof. IfR is not left hereditary, then by Theorem 2 there exists an i, 1 ≤ i ≤ n,
such that ReiR is not a heredity ideal. Hence, eiJei 6= 0 and by Corollary 1.5 of
[6], we have that lgldim R = ∞.

As noted above, if ReR is a heredity ideal, then both RReR and ReRR are
projective. Thus, there exists a right-hand version of Theorem 2 and we have the
following result.

Corollary 5. Suppose RJ is a direct sum of local left ideals, and JR is a direct
sum of local right ideals. Then R is hereditary if and only if every primitive ideal
of R is a heredity ideal.
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