## PRIMITIVE HEREDITY IDEALS

## Darren D. Wick

Abstract. Let R be a left Artinian ring. Dlab and Ringel have shown that R is hereditary if and only if every chain of idempotent ideals can be refined to a heredity chain [1]. In particular, if R is a basic hereditary ring, then every primitive ideal is a heredity ideal. The converse to this is clearly false. (See Example 1). We will introduce a class of rings that includes serial rings and monomial algebras, for which the converse does hold.

Throughout this paper, R will be a basic left Artinian ring (with unity) with a basic set of primitive idempotents  $\tau = \{e_1, \ldots, e_n\}$  and with J the Jacobson radical of R. We will refer to ideals  $Re_iR$  as primitive ideals. If M is an R-module, we denote the Loewy length of M by L(M), and the composition length of M by c(M).

Recall that an ideal I of R is *heredity* if  $I^2 = I$ , <sub>R</sub>I is projective, and IJI = 0. The ring R is *quasi-hereditary* if there exists a chain of ideals,

$$0 = I_0 \subset I_1 \subset \cdots \subset I_l = R,$$

called a *heredity chain*, such that  $I_k/I_{k-1}$  is a heredity ideal in  $R/I_{k-1}$  for each  $k = 1, \ldots, l$  [1,2]. If I is an idempotent ideal of R, then I = ReR for some idempotent e in R. Moreover, e may be taken to have the form  $e = e_1 + \cdots + e_k$  for some  $k \leq n$  and a suitable ordering of  $\tau$  [2]. Furthermore, if  $I = R(e_1 + \cdots + e_k)R$  is a heredity ideal, then each ideal  $Re_iR$ ,  $i = 1, \ldots, k$ , is again a heredity ideal of R [2]. Thus, [2] with a suitable ordering of  $\tau$ , any heredity chain can be refined to a heredity chain of the form

$$0 \subset Re_1 R \subset R(e_1 + e_2) R \subset \cdots \subset R(e_1 + \cdots + e_{n-1}) R \subset R.$$

Dlab and Ringel have shown that R is hereditary if and only if every chain of idempotent ideals can be refined to a heredity chain [1]. We first consider the trace of projective left modules in the radical of the ring R. If Re is projective, then  $ReJ = \text{Tr}_J(Re)$ . Note that ReJ is the right radical of the idempotent ideal ReR.

<u>Lemma 1</u>. Let ReR be a primitive ideal. The following are equivalent.

- (a) ReR is a heredity ideal.
- (b) ReJ is a projective left R-module.
- (c) For each i = 1, ..., n,  $\operatorname{Tr}_{Je_i}(Re)$  is either zero or isomorphic to a direct sum of copies of Re.

<u>Proof.</u> We may assume  $e = e_1$ . For any module  $_RN$ ,  $Re_1N = \text{Tr}_N(Re_1)$ . Thus, the equivalence of (b) and (c) follows immediately from the direct sum decomposition

$$Re_1J = \bigoplus_{i=1}^n Re_1Je_i = \bigoplus_{i=1}^n \operatorname{Tr}_{Je_i}(Re_1).$$

Since R is basic,  $Re_1Re_i = Re_1Je_i$  for i = 2, ..., n. Hence, we have the decomposition

$$Re_1R = \bigoplus_{i=1}^n Re_1Re_i$$
  
=  $Re_1 \oplus (\bigoplus_{i=2}^n Re_1Je_i)$   
=  $Re_1 \oplus (\bigoplus_{i=2}^n \operatorname{Tr}_{Je_i}(Re_1))$ 

Assume condition (c). From this last decomposition we have that  $Re_1R$  is a direct sum of copies of  $Re_1$  and is therefore projective. If  $Re_1Je_1 \neq 0$ , then  $1 \leq c(Re_1Je_1) \leq c(Je_1) < c(Re_1)$ , and thus,  $Re_1Je_1$  cannot be isomorphic to a direct sum of copies of  $Re_1$ . Hence, we must have  $Re_1Je_1 = 0$  and  $Re_1R$  is heredity.

To see that (a) implies (b) it suffices to observe that if  $Re_1R$  is heredity, then we have that  $\operatorname{Tr}_{Je_1}(Re_1) = Re_1Je_1 = 0$ .

Dlab and Ringel have shown that the notion of a heredity ideal (and thus the notion of a quasi-hereditary ring) is two-sided. That is, if I is a heredity ideal of R, then I is also projective as a right R-module [1]. Thus, there exists a corresponding version of Lemma 1 for right R-modules. In particular, we have the following corollary.

Corollary 1. For a primitive idempotent e in R,  $_RReJ$  is projective if and only if  $Je\overline{R_R}$  is projective.

Note that a primitive ideal ReR which is projective as a left R-module is not a heredity ideal if and only if  $eJe \neq 0$ . Moreover, if  $eJe \neq 0$ , then  $1 \leq c(ReJe) \leq c(Je) < c(Re)$  so that  $ReJe \neq 0$  and ReJe (and thus, ReJ) is not projective. Thus, we have the following result.

Corollary 2. A primitive ideal ReR is heredity if and only if both  $_RReJ$  and  $JeR_R$  are projective modules.

In particular, if ReR is a primitive heredity ideal, then  $_RReJ$  ( $JeR_R$ ) is a direct sum of local left (right) ideals. However, for J to be a direct sum of local left ideals, it does not suffice that each primitive ideal of R be heredity. Consider the following example.

Example 1. Let k be a field and consider the incidence algebra of the poset.



The indecomposable projective left *R*-modules have diagrams:



Notice that lgldim R = 2 so that R is quasi-hereditary but not left hereditary. It is clear that the primitive ideals  $Re_iR$   $(1 \le i \le 4)$  are heredity ideals. It is also clear that J is not a direct sum of local left ideals. Observe that  $R(e_2+e_3)R/Re_2R$  is not a projective left  $R/Re_2R$ -module and that  $R(e_2+e_3)R/Re_3R$  is not a projective left  $R/Re_3R$ -module. Hence, the chain of idempotent ideals  $0 \subset R(e_2+e_3)R \subset R$  cannot be refined to a heredity chain.

In Example 1, we see that if e is a primitive idempotent, then ReJ is a direct sum of local left ideals of R. However, the trace in J of the decomposable projective module  $R(e_2 + e_3)$  is neither local, nor a direct sum of local left ideals.

We will use the following characterization of tree subsets due to Burgess, Fuller, Green, and Zacharia [3].

<u>Proposition 1.</u> (Burgess, Fuller, Green, and Zacharia) Let m = L(R). Let X be a subset of  $R \setminus \{0\}$  such that  $X = \bigcup_{i=1}^{n} e_i X$  and if  $x, y \in X$  with  $x \neq y$  then  $Rx \neq Ry$ . Then, X is a tree subset for R if and only if X can be written  $X = Y_0 \cup \cdots \cup Y_{m-1}$  so that  $R = \bigoplus_{y \in Y_0} Ry$ ; and for each  $l, 1 \leq l \leq m-1$ , and  $x \in Y_{l-1}$ , there are subsets  $Y_{lx} \subseteq Y_l$  so that  $Y_l = \bigcup_{x \in Y_{l-1}} Y_{lx}$  and  $Jx = \bigoplus_{y \in Y_{lx}} Ry$ . Moreover, under these conditions,  $J^l = \bigoplus_{y \in Y_l} Ry$  for  $l = 1, \ldots, m-1$ .

<u>Theorem 1</u>. The following are equivalent.

- (a)  $J^k$  is a direct sum of local left ideals for all k = 1, ..., L(R) 1.
- (b)  $ReJ^k$  is a direct sum of local left ideals for all k = 1, ..., L(R) 1 and for all idempotents  $e \in R$ .

(c) There exists a tree subset for the regular module  $_{R}R$ .

<u>Proof</u>.

 $(a \Leftrightarrow c)$  This follows from Corollary 1.3 in [3].

(b  $\Rightarrow$  a) By hypothesis,  $R \cdot 1 \cdot J^k = J^k$  is a direct sum of local left ideals for each  $k = 1, \ldots, L(R) - 1$ .

 $(c \Rightarrow b)$  Suppose there exists a tree subset  $X = Y_0 \cup \cdots \cup Y_{L(R)-1}$  for RR. Let e be an idempotent in R and let  $x \in X$ . We claim that ReRx is either zero or a direct sum of local left ideals. To prove this, we induct on l = L(Rx).

l = 1: In this case Rx is semisimple so that ReRx is either zero or semisimple.

l > 1: We first note that  $x \notin Y_{L(R)-1}$ . Since  $x = e_i x$  for some basic idempotent  $e_i$ , Rx is a local left ideal of R. Thus, if ReRx = Rx we are done. Suppose  $ReRx \neq Rx$ . Then  $ReRx \subset Jx$  and therefore ReRx = ReJx. But,  $Jx = \bigoplus_{y \in Y_{(l+1)x}} Ry$  by Proposition 1. For  $y \in Y_{(l+1)x}$ ,  $Ry \subset Jx$  so that L(Ry) < L(Rx). Thus, by induction, ReRy is either zero or a direct sum of local left ideals. Thus,  $ReRx = ReJx = \bigoplus_{y \in Y_{(l+1)x}} ReRy$  is either zero or a direct sum of local left ideals.

Let  $1 \leq k \leq L(R) - 1$ . Then by Proposition 1,  $J^k = \bigoplus_{x \in Y_k} Rx$ . Thus,  $ReJ^k = \bigoplus_{x \in Y_k} ReRx$  is either zero or a direct sum of local left ideals.

Now, the existence of a tree subset for the regular module  $_RR$  is a defining property of left monomial rings [3]. Thus, we have the following examples of rings satisfying the conditions of Theorem 1 [3].

Example 2. The following rings satisfy the conditions of Theorem 1.

(a) Left monomial rings.

(b) Left serial rings.

- (c) Monomial algebras.
- (d) Left hereditary left Artinian rings.
- (e) Left Artinian rings with  $J^2 = 0$ .

Recall that a ring R is l-hereditary if for every two indecomposable projective R-modules P and Q, every non-zero homomorphism  $h: P \to Q$  is monic [4]. We note that l-hereditary rings are quasi-hereditary [2]. As was shown by Burgess and Fuller, if ReR is a primitive heredity ideal, then every non-zero homomorphism  $h: Re \to R$  is monic [2]. Hence, if every primitive ideal is heredity, R is l-hereditary. Conversely, suppose that R is l-hereditary and ReR a primitive ideal. Then any non-zero homomorphism  $h: Re \to Re$  is monic. Thus,  $eJe \subset ReJe = \operatorname{Tr}_{Je}(Re) = 0$ . However, it is easy to see that not every primitive ideal in an l-hereditary ring is a heredity ideal. Consider the following example.

Example 3. Let  $\Gamma$  be the digraph

$$1 \xrightarrow[b]{a} 2 \xrightarrow[d]{c} 3.$$

Let k be a field and let  $R = k\Gamma/I$ , where I = (cb - da). Then the indecomposable projective left R-modules have diagrams as follows.

Notice that  $_RRe_2R = Re_2 \oplus Je_1$ , and  $Je_1 = Re_2Je_1 = \operatorname{Tr}_{Je_1}(Re_2)$ . Since  $c(Je_1) = 5$  and  $c(Re_2) = 3$ , we see that  $Je_1$  (and hence,  $_RRe_2R$ ) is not projective. Thus, R is not a left hereditary ring. We claim that R is *l*-hereditary. To see this, it will suffice to show that any non-zero homomorphism  $h: Re_2 \to Je_1$  is monic. But any such homomorphism h is given by right multiplication by some  $x = e_2xe_1 \in e_2Je_1 = \langle a, b \rangle$ . Thus,  $x = \alpha a + \beta b$  for some  $\alpha, \beta \in k$ .

Now,  $Re_2 = \langle e_2, c, d \rangle$ . Suppose  $\lambda_1 e_2 + \lambda_2 c + \lambda_3 d \in \text{Ker } (h)$ , with  $\lambda_1, \lambda_2, \lambda_3 \in k$ . Then,  $0 = h(\lambda_1 e_2 + \lambda_2 c + \lambda_3 d) = \lambda_1 \alpha a + \lambda_1 \beta b + \lambda_2 \alpha c a + (\lambda_3 \alpha + \lambda_2 \beta) d a + \lambda_3 \beta d b$ . If either  $\alpha \neq 0$  or  $\beta \neq 0$ , we see that  $\lambda_i = 0$  for i = 1, 2, 3. Thus, h is monic and R is *l*-hereditary.

The rings in Examples 1 and 3 are l-hereditary rings which are not left hereditary. We will show that under conditions weaker than those of Theorem 1, the notions of l-hereditary and left hereditary are the same.

<u>Theorem 2</u>. Suppose that J is a direct sum of local left ideals. Then the following are equivalent.

- (a) R is left hereditary.
- (b) R is l-hereditary.
- (c) Every primitive ideal of R is a heredity ideal.

Proof.

 $(a \Rightarrow b)$  This is clear.

 $(b \Rightarrow c)$  Let R be *l*-hereditary and let  $I = Re_iR$  be a primitive ideal of R. As we have seen, if R is *l*-hereditary then eJe = 0 for every primitive idempotent e.

Thus, it will suffice to show that  $_{R}I$  is projective. For  $j \neq i$ , we have  $Re_iRe_j = \operatorname{Tr}_{Re_i}(Re_i) = Re_iJe_j$ . Thus,

$$Re_iR = \bigoplus_{j=1}^n Re_iRe_j = Re_i \oplus \bigoplus_{j \neq i} Re_iJe_j.$$

Now, each non-zero  $Re_i Je_j$  is a direct sum of local left ideals of the form Im  $(\rho_x)$ , where the homomorphism  $\rho_x : Re_i \to Je_j$  is given by right multiplication by x. By assumption,  $\rho_x$  is monic and thus,  $Re_i R$  is projective.

 $(c \Rightarrow a)$  Assume that every primitive ideal is heredity. Recall that R is left hereditary if and only if  $Je_k$  is projective for each  $k, 1 \le k \le n$  [5].

Let  $1 \leq k \leq n$ . Since  $J = \bigoplus_{i=1}^{n} Je_i$  is a direct sum of local left ideals,  $Je_k = \bigoplus_{j=1}^{l} L_j$  for some collection  $L_1, \ldots, L_l$  of local left ideals. Let  $1 \leq i \leq l$  and consider the local left ideal  $L_i$ . Assume  $L_i$  has projective cover  $Re_t$ . Notice that  $t \neq k$  since  $Re_k Je_k = 0$ . Since  $Re_t R$  is heredity,  $Re_t Re_k = Re_t Je_k$  is a direct sum of copies of  $Re_t$ . But  $Re_t Je_k = \bigoplus_{j=1}^{l} Re_t L_j$  and hence,  $Re_t L_i = \operatorname{Tr}_{L_i}(Re_t) = L_i$  is isomorphic (by Krull-Schmidt) to a copy of  $Re_t$ . Thus,  $L_i$  is projective and R is left hereditary.

Since the radical of a left hereditary ring is necessarily a direct sum of local left ideals, we also have the following result.

Corollary 3. Suppose R is *l*-hereditary. Then, R is left hereditary if and only if J is a direct sum of local left ideals.

Suppose J is a direct sum of local left ideals. We then have the following dichotomy of the left global dimensions of such rings R with the property that each primitive ideal is a projective left R-module.

Corollary 4. If J is direct sum of local left ideals and each primitive ideal is projective as a left R-module, then either R is left hereditary or lgldim  $R = \infty$ .

<u>Proof.</u> If R is not left hereditary, then by Theorem 2 there exists an  $i, 1 \le i \le n$ , such that  $Re_iR$  is not a heredity ideal. Hence,  $e_iJe_i \ne 0$  and by Corollary 1.5 of [6], we have that lgldim  $R = \infty$ .

As noted above, if ReR is a heredity ideal, then both  $_RReR$  and  $ReR_R$  are projective. Thus, there exists a right-hand version of Theorem 2 and we have the following result.

Corollary 5. Suppose  $_RJ$  is a direct sum of local left ideals, and  $J_R$  is a direct sum of local right ideals. Then R is hereditary if and only if every primitive ideal of R is a heredity ideal.

## References

- V. Dlab and C. M. Ringel, "Quasi-Hereditary Algebras," Illinois Journal of Mathematics, 33 (1989), 280–291.
- W. D. Burgess and K. R. Fuller, "On Quasihereditary Rings," Proceedings of the American Mathematical Society, 106 (1989), 321–328.
- W. D. Burgess, K. R. Fuller, E. L. Green, D. Zacharia, "Left Monomial Rings - A Generalization of Monomial Algebras," Osaka Journal of Mathematics, 30 (1993), 543–558.
- R. Martinez-Villa, Algebras Stably Equivalent to l-Hereditary Algebras, Lecture Notes in Mathematics, No. 832, Springer-Verlag, New York, 1980, 396–431.
- 5. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York and Berlin, 2nd ed., 1992.
- D. D. Wick, "A Generalization of Quasi-Hereditary Rings," Communications in Algebra, 24 (1996), 1217–1227.

Darren D. Wick Department of Mathematics and Computer Science Ashland University Ashland, OH 44805 email: dwick@ashland.edu