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SYMMETRIC PYTHAGOREAN TRIPLE

PRESERVING MATRICES

James T. Bruening, Tracy R. Lohmeier, and Cheryl L. Sebaugh

Abstract. A Pythagorean Triple Preserving Matrix (PTPM) is a 3×3 matrix

such that if it is multiplied by a Pythagorean Triple, the result is also a Pythagorean

Triple. Necessary and sufficient conditions for a Pythagorean Triple Preserving

Matrix to be symmetric are given. Monoids of Symmetric Pythagorean Triple

Preserving Matrices (SPTPM) with positive integer entries will be developed, and

to ensure that the set is closed under matrix multiplication, the focus will be on

finding commutative SPTPM’s.

1. Introduction. A triple of positive integers (a, b, c) is defined to be a

Pythagorean Triple if it satisfies the equation a2 + b2 = c2. Moreover, (a, b, c) is

said to be a Primitive Pythagorean Triple (PPT) if gcd(a, b, c) = 1 [3].

It is known [1] that all Primitive Pythagorean Triples (a, b, c) are of the form

(a, b, c) = (m2 − n2, 2mn,m2 + n2) where m, n satisfy the conditions listed below:

I.1 m, n are positive integers.

I.2 m > n.

I.3 gcd(m,n) = 1.

I.4 m 6≡ n (mod 2).

It should be noted that a triple (m2 − n2, 2mn,m2 + n2) satisfies the

Pythagorean Theorem for every value of m and n. However, only those that satisfy

conditions I.1 to I.4 above are called PPT’s. Also, this form implies that if (a, b, c)

is a Primitive Pythagorean Triple, then b must be even.

A 3×3 matrix A with integer entries is called a Pythagorean Triple Preserving

Matrix if whenever (a, b, c) is a PT, then (d, e, f) = (a, b, c)A is also a PT [1]. For

example, let

A =





1 2 2
2 1 2
2 2 3



 .
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One can easily see that the Pythagorean Triple (3, 4, 5) multiplied by A gives

(3, 4, 5)A = (21, 20, 29), which is yet another Pythagorean Triple [4]. In two recent

papers by Palmer, Ahuja, and Tikoo [1,2], Pythagorean Triple Preserving Matrices

have been identified and constructed.

The following lemma and theorem are proven by Palmer, Ahuja, and Tikoo

[1].

Lemma 1. Let A denote the matrix

A =





(r2−t2)−(s2−u2)
2 rs− tu (r2−t2)+(s2−u2)

2
rt− su ru + st rt+ su

(r2+t2)−(s2+u2)
2 rs+ tu (r2+t2)+(s2+u2)

2



 . (1)

Then (m2−n2, 2mn,m2+n2)A = (M2−N2, 2MN,M2+N2), where M = mr+nt,

N = ms + nu. The relation between (m,n) and (M,N) can be expressed by the

matrix equation

(m,n)

[

r s
t u

]

= (M,N). (2)

Theorem 1. A 3× 3 matrix is a PTPM if and only if it is of form A.

The authors in [1] further show that the values of r, s, t, u should be restricted

in the following ways:

R-1. r, s, t, u are integers with r, s > 0.

R-2. r+ t ≥ s+ u ≥ 0. (Later in this paper, it will be further assumed that r > u.)

R-3. ru − st = ±1.

R-4. r + s ≡ t+ u ≡ 1 (mod 2).

These restrictions are sufficient to assure that the second triple (M2 −
N2, 2MN,M2 + N2) is a PPT whenever (m2 − n2, 2mn,m2 + n2) is a PPT. It

is also shown in [1] that detA = (ru − st)3, so since (±1)3 = ±1, only PTPM’s

with determinant ±1 will be considered.

A semigroup is a nonempty set G together with an associative binary operation;

a monoid is a semigroup G which contains a (two-sided) identity element e ∈ G

such that ae = ea = a for all a ∈ G [6]. Therefore since (1) the identity is obviously
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a PTPM, (2) the set of PTPM’s is easily seen to be closed under the operation of

matrix multiplication, and (3) matrix multiplication is associative, it is known that

the set of PTPM’s forms a monoid.

A square matrix S is said to be symmetric if S = ST , where ST denotes the

transpose of S. The set of all Symmetric Pythagorean Triple Preserving Matrices

is not closed under the operation of matrix multiplication since the product of

two symmetric matrices may or may not be symmetric. It can be easily shown,

however, that the product of two symmetric matrices is symmetric if and only if

the two matrices commute.

It is known for symmetric matrices [7,8] that any two eigenvectors from differ-

ent eigenspaces are orthogonal. Furthermore, an (n× n) matrix A is orthogonally

diagonalizable if and only if A is symmetric, and a matrix is known to be diago-

nalizable if and only if it possess a set of n linearly independent eigenvectors. An

n×n matrix A is defined to be semisimple if it has a total of n linearly independent

eigenvectors [5], so every symmetric matrix is semisimple. The following theorem

[5] will then guarantee when the product of two SPTPM’s is symmetric.

Theorem 2. If two matrices are semisimple, then they commute if and only if

they have a complete set of eigenvectors in common.

2. Conditions That Guarantee Symmetry.

Theorem 3. Let

A =





(r2−t2)−(s2−u2)
2 rs− tu (r2−t2)+(s2−u2)

2
rt− su ru + st rt+ su

(r2+t2)−(s2+u2)
2 rs+ tu (r2+t2)+(s2+u2)

2



 .

Then A is symmetric if and only if s = t.

The proof follows in a straightforward manner.

Remark. Note that if s = t, then the matrix

[

r s
t u

]
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in equation (2) is symmetric as well.

The symmetric PTPM, for the remainder of this paper, will be denoted J ,

where J has the form

J =





r2−2s2+u2

2 rs − su r2−u2

2
rs− su ru + s2 rs + su
r2−u2

2 rs + su r2+2s2+u2

2



 .

The symmetry condition s = t when applied to the determinant condition,

R-3 (ru − st = ±1), produces the two equations, ru − s2 = 1 and ru − s2 = −1.

The first of these equations can be rewritten ru = s2 + 1, but this rewritten form

does not have any obvious solutions. The second equation, though, when rewritten

ru = s2 − 1 = (s + 1)(s − 1) produces the natural solutions r = s + 1, u = s − 1.

Substituting these into (1) generates symmetric PTPM’s of the form

C =





1 2s 2s
2s 2s2 − 1 2s2

2s 2s2 2s2 + 1



 ,

where detC = (ru − s2) = −1. The example





1 2 2
2 1 2
2 2 3





illustrated earlier in this paper is generated by r = 2, s = t = 1, u = 0.

It is a routine matter to show that J is a symmetric PTPM of form C if and

only if r = s + 1 and u = s − 1. The significance of matrices of form C will be

illustrated in later sections when monoids of symmetric PTPM’s are studied.

3. Eigenvalues and Eigenvectors. All SPTPM’s are of the form

J =





r2−2s2+u2

2 rs − su r2−u2

2
rs− su ru + s2 rs + su
r2−u2

2 rs + su r2+2s2+u2

2



 ,
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where r, s > 0, ru − s2 = ±1. The condition R-2 (r > u) guarantees the positive

nature of the elements and the condition R-4 (r+s ≡ t+u ≡ 1 (mod 2)) guarantees

that the entries are integers. Through the use of computer software, the eigenvalues

λi and eigenvectors xi of J were found:

λ1 = ru − s2 x1 =





2s
u−r

1
0





λ2 = r2+2s2+u2

2 + |r+u|
√
r2−2ru+4s2+u2

2 x2 =





1
2s

r−u√
r2−2ru+4s2+u2

r−u





λ3 = r2+2s2+u2

2 + |r+u|
√
r2−2ru+4s2+u2

2 x3 =





1
2s

r−u√
r2−2ru+4s2+u2

u−r





.

4. Conditions for SPTPM’s to Commute.

Theorem 4. Let J1 and J2 be SPTPM’s generated by r1, s1, and u1, and r2,

s2, and u2, respectively. Then J1 and J2 commute if and only if

s1
r1 − u1

=
s2

r2 − u2
.

Proof. Assume the semisimple matrices J1 and J2 commute. Let the eigenvec-

tors be as follows:

J1 : x1 =





2s1
u1−r1
1
0



 , x2 =







1
2s1

r1−u1√
r2
1
−2r1u1+4s2

1
+u2

1

r1−u1






, x3 =







1
2s1

r1−u1√
r2
1
−2r1u1+4s2

1
+u2

1

u1−r1







and

J2 : y1 =





2s2
u2−r2
1
0



 , y2 =







1
2s2

r2−u2√
r2
2
−2r2u2+4s2

2
+u2

2

r2−u2






, y3 =







1
2s2

r2−u2√
r2
2
−2r2u2+4s2

2
+u2

2

u2−r2






.



VOLUME 13, NUMBER 1, WINTER 2001 9

Since J1 and J2 must have a complete set of common eigenvectors by Theorem

2, the pairing x1 = y1, x2 = y2, x3 = y3, is the only possibility. This results in the

following conditions:

2s1
r1 − u1

=
2s2

r2 − u2
, (3)

and

√

r21 − 2r1u1 + 4s21 + u2
1

r1 − u1
=

√

r22 − 2r2u2 + 4s22 + u2
2

r2 − u2
. (4)

It can be shown that (3) and (4) are equivalent. (Assume r > u.) This implies

that when the eigenvectors are in common, then

s1
r1 − u1

=
s2

r2 − u2
.

Conversely, assume
s1

r1 − u1
=

s2
r2 − u2

and let the eigenvectors of J1 and J2 be the same as above. Since equations (3)

and (4) are equivalent, the eigenvectors of J1 and J2 are in common by the pairing

x1 = y1, x2 = y2, x3 = y3, and the matrices commute by Theorem 2.

Corollary 1. Let C1 be a matrix of form C generated by s = k and let J1 be a

matrix of form J generated by r1, s1, and u1. C1 and J1 commute if and only if

k =
2s1

r1 − u1
.

Corollary 2. If C1 and C2 are two SPTPM’s of form C, then C1 and C2

commute if and only if C1 = C2.

Theorem 5. If J1 and C1 are SPTPM’s of form J and C, respectively, then

J1 and C1 commute if and only if J1 = Cn
1 , n ≥ 0. (C0

1 = I3, the 3 by 3 identity

matrix.)
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Proof. Let J1 = Cn
1 , n ≥ 0. Then J1 ·C1 = Cn

1 ·C1 = Cn+1
1 = C1 ·Cn

1 = C1 ·J1,
and the matrices commute.

Now assume J1 and C1 commute, where

C1 =





1 2k 2k
2k 2k2 − 1 2k2

2k 2k2 2k2 + 1



 ,

k a positive integer, and J1 is an SPTPM generated by r1, s1, u1. From condition

R-3,

r1u1 − s21 = ±1, (5)

and from Corollary 1,

k =
2s1

r1 − u1
. (6)

Combining equations (5) and (6),

(

2s1 + ku1

k

)

u1 − s21 = ±1

ku2
1 + 2s1u1 − ks2 = ±k

ku2
1 + 2s1u1 − ks2 ± k = 0.

The quadratic formula will then give

u1 =
−s1 +

√

s21(1 + k2)± k2

k
. (7)

Similarly,

r1 =
s1 +

√

s21(1 + k2)± k2

k
. (8)

The minus signs before the radicals in u1 and r1 from the quadratic formula are

eliminated to guarantee r1 is positive, and so that equation (6) is satisfied.
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From condition R-4, r1 − u1 must be even, and equation (6) implies

r1 − u1

2
=

s1
k
,

so that k divides s1. Let s1 = q · k. Then
√

s21(k
2 + 1)± k2 = k

√

q2(k2 + 1)± 1.

If p2 = q2(k2 + 1)± 1, p an integer, then

p2 − q2(k2 + 1) = ±1, (9)

is a form of Pell’s equation, and solutions (p, q) can be found by methods outlined

in number theory books [3,9]. It can be shown that all positive integer solutions of

(9) are of the form (pn, qn), n ≥ 1, where p0 = 1, p1 = k, . . . , pn = 2k ·pn−1+pn−2,

and q0 = 0, q1 = 1, . . . , qn = 2k·qn−1+qn−2. Furthermore, p2n−q2n(k
2+1) = (−1)n.

Then u1 = −qn +
√

q2n(k
2 + 1) + (−1)n, r1 = qn +

√

q2n(k
2 + 1) + (−1)n, and

s1 = k ·qn for each n ≥ 1. This implies that the matrix J1 which commutes with C1

will be one of the sequence of matrices determined by a triple (r1, s1, u1) generated

by values of qn.

If q0 = 0 for n = 0, then r1 = 1, s1 = 0, u1 = 1, and J1 = I3 = C0
1 . For n = 1,

q1 = 1, so that r1 = k + 1, s1 = k, and u1 = k − 1. The matrix J1 determined by

these values is C1. Now for n = 2, q1 = 2k, which makes r1 = 2k2+2k+1, s1 = 2k2,

and u1 = 2k2 − 2k + 1. These values will produce J1 = C2
1 . It can be shown by

math induction that Cn
1 is generated by s = qn · k, r = qn +

√

q2n(k
2 + 1) + (−1)n,

and u = −qn +
√

q2n(k
2 + 1) + (−1)n so that the pattern will continue and clearly

imply that J1 is a power of C1.

Corollary 3. Let J1 be a matrix of form J generated by r1, s1, u1. J1 is a

power of a matrix of form C if and only if

k =
2s1

r1 − u1

is an integer. In this case, J1 is a power of the matrix of form C generated by the

integer k.
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As was seen in Theorem 4, two matrices J1 and J2 of form J commute if and

only if
s1

r1 − u1
=

s2
r2 − u2

.

If the ratio 2s/(r − u) for each of the matrices J1 and J2 equals an integer, then

J1 and J2 are powers of a matrix of form C and obviously commute. The question

remains, though, for what fractions p/q do there exist commuting matrices for

which
2s

r − u
=

p

q
.

Consider the rewritten form of the condition of Theorem 4

s2 =
s1(r2 − u2)

r1 − u1
. (10)

The r, s, and u values in the table below for matrices J1 and J2 were computer-

derived values to satisfy equation (10) and generate matrices that commute.

J1 matrix J2 matrix

r1 s1 u1
2s1

r1−u1

r2 s2 u2
2s2

r2−u2

5 2 1 1
1 12 5 2 1

1

17 4 1 1
2 72 17 4 1

2

37 6 1 1
3 228 37 6 1

3

65 8 1 1
4 528 65 8 1

4

101 10 1 1
5 1020 101 10 1

5

Notice that the fractions are of the form 1/n, and the values of r, s, and u seem

to be forming a sequence for each 1/n. For each fraction p/q in lowest terms not

equal to an integer, it is possible that there will exist a set of commuting matrices

of form J such that for each J in the set,

2s

r − u
=

p

q
.
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It is conjectured, however, considering computer-generated examples similar to

those listed above, that only fractions of the form 1/n admit a set of commut-

ing matrices.

5. Monoids of Commuting Matrices. The earlier theorems established

conditions for Symmetric Pythagorean Triple Preserving matrices to commute,

thereby producing products that are symmetric. The goal was to find closed sets of

SPTPM’s under matrix multiplication. From Theorem 5 and Corollary 3, it is seen

that the value of the ratio 2s/(r− u) will generate different monoids. The identity

matrix must be in each monoid, but since the values r = 1, s = 0, u = 1 produce

the identity, the value of the ratio 2s/(r − u) for the identity is the indeterminate

0/0. The identity matrix, which is a SPTPM, will thus be considered an element

in each monoid.

Let k be an integer. Let Ck denote the matrix of form C generated by the

integer k. The set of all nonnegative powers of Ck (the identity taken as C0
k) will

form a closed set under matrix multiplication and thus be a monoid. Theorem 5

gives the method for completely describing each matrix in this monoid. Thus, for

each integer k there exists a monoid of SPTPM’s such that the ratio 2s/(r−u) can

be considered to equal k for all matrices in the monoid.

Next consider monoids corresponding to the fraction 1/2. Let

J0 =





7 4 8
4 1 4
8 4 9



 ,

r = 4, s = 1, u = 0; and let

J1 =





129 64 144
64 33 72
144 72 161



 ,

r = 17, s = 4, u = 1. If J2 is generated by r = 72, s = 17, u = 4, J3 by r = 305,

s = 72, u = 17, J4 by r = 1292, s = 305, u = 72, and J5 by r = 5473, s = 1292,

u = 305, then for each of these,

2s

r − u
=

1

2
.
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J1 = J2
0 , J2 = J3

0 , J3 = J4
0 = J2

1 , J4 = J5
0 , and J5 = J6

0 = J3
1 = J2

2 . The powers of

J0 form a monoid, and since these powers will commute,

2s

r − u
=

1

2
.

It can be shown that the powers of J0 will form the complete monoid for 1/2.

Notice for each Ji in the paragraph above, the s and u values of Ji are the r

and s values, respectively, of Ji−1, for each Ji, r = 4s+ u, or

2s

r − u
=

1

2
.

The monoid for 1/2 seems to also be determined by the sequence

1, 0, 1, 4, 17, 72, 305, 1292, 5473, . . . , where the u, s, and r values (r = 4s+ u) for a

particular matrix in the monoid will be three consecutive elements of the sequence.

(1, 0, 1 determines the identity, or J0
0 .) Again, it can be shown that the sequence

listed above will generate all matrices in the monoid for 1/2.

In the general case, matrices in the monoid for the fraction 1/n will have u,

s, and r values that come from the sequence 1, 0, 1, 2n, 4n2 + 1, 8n3 + 4n, 16n4 +

12n2+1, . . . , where the elements of this sequence satisfy the recurrence relationship

aj = 2n · aj−1 + aj−2. If u = aj−2, s = aj−1, and r = aj = 2n · aj−1 + aj−2, then

it can be easily seen that

2s

r − u
=

1

n
.

By a method similar to the proof of Theorem 5, it can be conclusively shown that

the powers of an SPTPM J0, with r = 2n, s = 1, and u = 0, will generate all

matrices in the monoid for 1/n, and further, that the sequence listed above will

generate all the matrices in the monoid.

6. Conclusion. The main focus of this paper was to find sets of Symmetric

Pythagorean Triple Preserving Matrices (SPTPM) that are closed under matrix

multiplication. The general form A of a Pythagorean Triple Preserving Matrix was
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first revised to develop a general form J for SPTPM’s with parameters r, s, and u.

Developing closed sets of SPTPM’s involved finding products of symmetric matrices

that would again be symmetric, but this implied the products of these symmetric

matrices must be commutative. Since this is known to occur when the two matrices

have a set of eigenvectors in common, the condition

s1
r1 − u1

=
s2

r2 − u2
,

that will guarantee when two SPTPM’s commute, was established by equating

the eigenvectors of two SPTPM’s J1 and J2 generated by r1, s1, u1 and r2, s2 u2,

respectively. From this condition then, it was determined that two types of monoids

of commutative SPTPM’s are now known to exist, and each matrix in a particular

monoid satisfies either the condition

2s

r − u
− k,

k an integer, or

2s

r − u
=

1

n
,

n an integer.

References

1. L. Palmer, M. Ahuja, and, M. Tikoo, “Finding Pythagorean Triple Preserving
Matrices,” Missouri Journal of Mathematical Sciences, 10 (1998), 99–105.

2. L. Palmer, M. Ahuja, and, M. Tikoo, “Constructing Pythagorean Triple Pre-
serving Matrices,” Missouri Journal of Mathematical Sciences, 10 (1998), 159–
168.

3. C. Vanden Eynden, Elementary Number Theory, Random House, New York,
1987.

4. Problem M-2, proposed by S. Blasberg, The AMATYC Review, 9 (1987), 69.

5. M. Pease, III, Methods of Matrix Algebra, Academic Press, New York, 1965.

6. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., 1974.



16 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

7. L. W. Johnson, R. D. Riess, and J. T. Arnold, Introduction to Linear Algebra,
Addison-Wesley Longman, Inc., Reading, Massachusetts, 1998.

8. D. C. Lay, Linear Algebra and its Applications, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1997.

9. D. M. Burton, Elementary Number Theory, Fourth Edition, The McGraw-Hill
Companies, Inc., New York, 1998.

10. T. R. Lohmeier, Symmetric Pythagorean Triple Preserving Matrices, Masters
Thesis, Southeast Missouri State University, Cape Girardeau, Missouri, 1996.

11. C. L. Sebaugh, Commutative Monoids of Symmetric Pythagorean Triple Pre-

serving Matrices, Masters Thesis, Southeast Missouri State University, Cape
Girardeau, Missouri, 1998.

James T. Bruening
Department of Mathematics
Southeast Missouri State University
Cape Girardeau, MO 63701
email: jbruening@semovm.semo.edu

Tracy R. Lohmeier
Cape Central High School
205 N. Caruthers
Cape Girardeau, MO 63701

Cheryl L. Sebaugh
Cape Central High School
205 N. Caruthers
Cape Girardeau, MO 63701


