can also be produced with the aid of complex numbers.

Complex numbers are practically synonymous with the notion of vectors, and are thus used to help explain space-time physics, planetary motion, and electrical circuitry. In particular, the author discusses a certain feedback oscillator circuit that was the basis for a product developed in the late 1930's by a couple of young engineers from Stanford named Hewlett and Packard.

Complex function theory is alive and growing and is an ever important component today of university-level mathematics. It is a topic that has touched the lives of practically every mathematician during the last century.

In conclusion, this is a book that belongs in the personal library of every undergraduate student of mathematics, and many others with a serious interest in science. It is written in a light style, and is full of witticisms, anecdotes, colorful history and scientific applications. The author concludes by showing that (the principal value of) the even more perplexing number i^i is, in fact, a marvelously positive real number.

REVIEWED BY Thomas P. Dence Department of Mathematics Ashland University Ashland, OH 44805

ERRATA

J. B. Dence, "Primitive Roots the Cyclotomic Way," Missouri Journal of Mathematical Sciences, 12 (2000), 5–11.

In the 4th column of Table 3 the entries -1, -1, 1, 1 should read 1, 1, -1, -1. Also, in line 3 of page 7, the expression

$$\prod_{d_i|d} \Phi_d(x)$$

should read

$$\prod_{d_i|d} \Phi_{d_i}(x).$$