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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new

insights on old problems are always welcomed by the problem editor.

121. [1998, 176] Proposed by Ice B. Risteski, Skopje, Macedonia.

Determine the volume of the body obtained by rotating the curve y = ln sinx,

(0 ≤ x ≤ π) about the x-axis.

Solution by Bob Prielipp, University of Wisconsin - Oshkosh, Oshkosh, Wis-

consin.

V = π

∫ π

0

(

ln sinx
)2
dx = 2π

∫ π/2

0

(

ln sinx
)2
dx.

It is known that

∫ π/2

0

sin2a−1 θ cos2b−1 θdθ =
1

2
B(a, b) =

1

2

Γ(a)Γ(b)

Γ(a+ b)
,

where B is the beta function and Re (a) > 0 and Re (b) > 0. A corollary to this

result is the following.

Corollary.

∫ π

0

sin2α−1 xdx =
1

2

Γ(α)Γ(1/2)

Γ(α + 1/2)
=

√
π

2

Γ(α)

Γ(α+ 1/2)
,

where α is a positive real number.

Let

f(α) =

∫ π/2

0

sin2α−1 xdx =

√
π

2

Γ(α)

Γ(α+ 1/2)
.
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Lemma 1.

d

dα

(

sin2α−1 x
)

= 2 sin2α−1 x ln sinx.

Proof. Let y = sin2α−1 x. Then ln y = ln(sin2α−1 x) = (2α− 1) ln sinx. Thus,

y′

y
=

d

dα

[

(2α− 1) ln sinx
]

= 2 ln sinx,

so
d

dα

(

sin2α−1 x
)

= 2 sin2α−1 x ln sinx.

Lemma 2.

d

dα

Γ(α)

Γ(α+ 1/2)
=

Γ(α)

Γ(α+ 1/2)
·
(

psi(α)− psi(α+ 1/2)
)

.

Proof. Let y = Γ(α)/Γ(α+ 1/2). Then, ln y = lnΓ(α) − ln Γ(α+ 1/2). Thus,

y′

y
=

d

dα
ln Γ(α) − d

dα
ln Γ(α+ 1/2) = psi(α) − psi (α+ 1/2),

so

d

dα

Γ(α)

Γ(α+ 1/2)
=

Γ(α)

Γ(α+ 1/2)

(

psi(α)− psi(α+ 1/2)
)

.

Then,

f ′(α) =
d

dα

∫ π/2

0

sin2α−1 xdx

=

∫ π/2

0

d

dα

(

sin2α−1 x
)

dx =

∫ π/2

0

2 sin2α−1 x ln sinxdx

= 2

∫ π/2

0

sin2α−1 x ln sinxdx.
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Also,

f ′(α) =
d

dα

(√
π

2

Γ(α)

Γ(α+ 1/2)

)

=

√
π

2

d

dα

(

Γ(α)

Γ(α+ 1/2)

)

=

√
π

2

Γ(α)

Γ(α+ 1/2)

(

psi(α)− psi(α+ 1/2)
)

.

In addition,

f ′′(α) =
d

dα

(

2

∫ π/2

0

sin2α−1 x ln sinxdx

)

= 2

∫ π/2

0

d

dα

(

sin2α−1 x
)

ln sinxdx

= 2

∫ π/2

0

(

2 sin2α−1 x ln sinx
)

ln sinxdx

= 4

∫ π/2

0

sin2α−1 x
(

ln sinx
)2
dx.

Also,

f ′′(α) =

√
π

2

d

dα

(

Γ(α)

Γ(α+ 1/2)

(

psi(α)− psi(α+ 1/2)
)

)

=

√
π

2

(

Γ(α)

Γ(α+ 1/2)

(

psi′(α)− psi′(α+ 1/2)
)

+
(

psi(α)− psi(α+ 1/2)
) d

dα

Γ(α)

Γ(α+ 1/2)

)
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=

√
π

2

(

Γ(α)

Γ(α+ 1/2)

(

psi′(α) − psi′(α+ 1/2)
)

+
(

psi(α)− psi(α+ 1/2)
) Γ(α)

Γ(α+ 1/2)

(

psi(α)− psi(α+ 1/2)
)

)

=

√
π

2

Γ(α)

Γ(α+ 1/2)

[

(

psi(α)− psi(α+ 1/2)
)2

+ psi′(α) − psi′(α+ 1/2)

]

.

Hence, if C is Euler’s constant,

∫ π/2

0

(

ln sinx
)2
dx =

1

4
f ′′

(

1

2

)

=
1

4

√
π

2

Γ(1/2)

Γ(1)

[

(

psi(1/2)− psi(1)
)2

+ psi′(1/2)− psi′(1)

)

=
1

4

√
π

2

√
π

1

[

(

(−C − 2 ln 2)− (−C)
)2

+
π2

2
− π2

6

]

=
π

8

[

4
(

ln 2
)2

+
π2

3

]

=
π

2

[

(

ln 2
)2

+
π2

12

]

.

Finally,

V = π

∫ π

0

(

ln sinx
)2
dx = 2π

∫ π/2

0

(

ln sinx
)2
dx

= 2π · π
2

[

(

ln 2
)2

+
π2

12

]

= π2

[

(

ln 2
)2

+
π2

12

]

.
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Also solved by the proposer. One incorrect solution was also received.

122. [1998, 176] Proposed by Ice B. Risteski, Skopje, Macedonia.

Evaluate

∫ +∞

0

ln3 x

cosh(3 lnx)
dx.

Solution I by Joseph Wiener, University of Texas - Pan American, Edinburg,

Texas.

Since cosh t = (et + e−t)/2, the integrand becomes 2x3 ln3 x/(1 + x6). Let us

take an auxiliary integral

∫

∞

0

up−1

1 + u
du = B(p, 1− p) =

π

sin(pπ)
, 0 < p < 1,
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where B denotes Euler’s beta function, and differentiate it with respect to the

parameter p giving

∫

∞

0

up−1 lnu

1 + u
du = −π2 cos(pπ)

sin2(pπ)
,

∫

∞

0

up−1 ln2 u

1 + u
du = π3 1 + cos2(pπ)

sin3(pπ)
,

∫

∞

0

up−1 ln3 u

1 + u
du = −π4

[

5 + cos2(pπ
]

cos(pπ)

sin4(pπ)
.

In the latter integral, we make the substitution u = x6 which changes the integrand

to 64x6p−1 ln3 x/(1+x6), and it remains to set 6p− 1 = 3, that is, p = 2/3 in order

to obtain the value of the original integral: 28(π/6)4/3.

Solution II by Kenneth B. Davenport, Frackville, Pennsylvania.

To evaluate

∫

∞

0

ln3 x

cosh(3 lnx)
dx,

we let u = lnx (so dx = eudu). The expression then becomes

2

∫

∞

−∞

u3eudu

e3u + e−3u
. (1)

Now note we may evaluate the bounds of the initial expression between 0 to 1 and

from 1 to ∞. Thus we may write (1) as

2

∫ 0

−∞

u3e4u

1 + e6u
du+ 2

∫

∞

0

u3e−2u

1 + e−6u
du. (2)
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Expanding (2) further we obtain

2

[
∫

∞

0

∞
∑

k=0

(−1)ku3e−(2+6k)udu+

∫ 0

−∞

∞
∑

k=1

(−1)k−1u3e(6k−2)udu

]

. (3)

Now using the expansion formula and termwise integration, that is

∫

xmeaxdx =
eax

a

(

xm − m

a
xm−1 +

m(m− 1)

a2
xm−2 · · ·

)

we have the first expression in (3) becomes

∞
∑

k=0

(−1)k
e−(2+6k)u

−(2 + 6k)

(

u3 +
3u2

2 + 6k
+

6u

(2 + 6k)2
+

6

(2 + 6k)3

)∣

∣

∣

∣

∞

0

= 12
∞
∑

k=0

(−1)k

(2 + 6k)4
.

(4)

Similarly, the second expression in (3) becomes

∞
∑

k=1

(−1)k−1 e
(6k−2)u

6k − 2

(

u3− 3u2

6k − 2
+

6u

(6k − 2)2
− 6

(6k − 2)3

)∣

∣

∣

∣

0

−∞

= 12

∞
∑

k=1

− (−1)k−1

(6k − 2)4
.

(5)

Now we use the fact (from Abramowitz and Stegun, p. 808) that

η(4) = 1− 1

24
+

1

34
− · · · = 7π4

720
.

The sum of the series, (4) and (5), is then

12

(

η(4)

16
− η(4)

1296

)

=
7π4

972
.
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Solution III by Bob Prielipp, University of Wisconsin - Oshkosh, Oshkosh,

Wisconsin.

It is known [1] that for 0 < j + 1 < n,

∫

∞

0

xjdx

xn + a
=

π

na(n−j−1)/n sin[(j + 1)π/n]
.

Thus,

∫

∞

0

xm−1

xn + 1
dx =

π

n sin(mπ/n)
, 0 < m < n.

Letting x = u6 (so dx = 6u5du), 6m− 1 = t, and n = 1 yields

I(t) =

∫

∞

0

ut

u6 + 1
du =

π

6 sin((t+ 1)π/6)
, −1 < t < 5.

Lemma 1.

2I ′′′(3) = 2

∫

∞

0

(lnu)3

u6 + 1
u3du.

Proof. Let y(t) = ut. Then ln y = t lnu so y′/y = lnu. Thus, y′(t) = ut lnu.

Hence,

I ′(t) =

∫

∞

0

d

dt

(

ut

u6 + 1

)

du =

∫

∞

0

1

u6 + 1

d

dt

(

ut
)

du

=

∫

∞

0

1

u6 + 1
ut lnudu =

∫

∞

0

lnu

u6 + 1
utdt.
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It follows that

I ′′(t) =

∫

∞

0

lnu

u6 + 1

d

dt

(

ut
)

dt =

∫

∞

0

lnu

u6 + 1
ut lnudu =

∫

∞

0

(

lnu
)2

u6 + 1
utdu

and that

I ′′′(t) =

∫

∞

0

(

ln u
)2

u6 + 1

d

dt
(ut)du =

∫

∞

0

(

lnu
)2

u6 + 1
ut lnudu =

∫

∞

0

(

lnu
)3

u6 + 1
utdu.

Therefore,

2I ′′′(3) = 2

∫

∞

0

(

lnu
)3

u6 + 1
u3du.

Lemma 2.

2

∫

∞

0

u3
(

lnu
)3

u6 + 1
du =

∫

∞

0

(

lnx
)3

cosh(3 lnx)
dx.

Proof. Because 2 coshw = ew + e−w, it follows that

∫

∞

0

(

lnx
)3

2 cosh(3 lnx)
dx =

∫

∞

0

(

lnx
)3

e3 lnx + e−3 lnx
dx =

∫

∞

0

(

lnx
)3

x3 + x−3
dx

=

∫

∞

0

x3
(

lnx
)3

x6 + 1
dx =

∫

∞

0

u3
(

lnu
)3

u6 + 1
du.

Hence,

2

∫

∞

0

u3
(

lnu
)3

u6 + 1
du =

∫

∞

0

(

lnx
)3

cosh(3 lnx)
dx.
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Let

z(t) =
π

6

(

sin
(t+ 1)π

6

)

−1

.

Then,

z′(t) =
π

6
(−1)

(

sin
(t+ 1)

6

)

−2

cos
(t+ 1)π

6
· π
6

= −
(

π

6

)2(

sin
(t+ 1)π

6

)

−2

cos
(t+ 1)π

6
,

z′′(t) = −
(

π

6

)2[(

sin
(t+ 1)π

6

)

−2(

− sin
(t+ 1)π

6

)

π

6

+ cos
(t+ 1)π

6
(−2)

(

sin
(t+ 1)π

6

)

−3

cos
(t+ 1)π

6
· π
6

]

=

(

π

6

)3[(

sin
(t+ 1)π

6

)

−1

+ 2

(

sin
(t+ 1)π

6

)

−3(

cos
(t+ 1)π

6

)2]

,
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and

z′′′(t) =

(

π

6

)3[

(−1)

(

sin
(t+ 1)π

6

)

−2

cos
(t+ 1)π

6
· π
6

+ 2

(

sin
(t+ 1)π

6

)

−3

· 2
(

cos
(t+ 1)π

6

)(

− sin
(t+ 1)π

6

)

π

6

+

(

cos
(t+ 1)π

6

)2

· 2(−3)

(

sin
(t+ 1)π

6

)

−4

cos
(t+ 1)π

6
· π
6

]

=

(

π

6

)4[

−
(

sin
(t+ 1)π

6

)

−2

cos
(t+ 1)π

6

− 4

(

sin
(t+ 1)π

6

)

−2

cos
(t+ 1)π

6

− 6

(

sin
(t+ 1)π

6

)

−4(

cos
(t+ 1)π

6

)3]

=

(

π

6

)4[

−5

(

sin
(t+ 1)π

6

)

−2

cos
(t+ 1)π

6

− 6

(

sin
(t+ 1)π

6

)

−4(

cos
(t+ 1)π

6

)3]

.

Hence,

z′′′(3) =

(

π

6

)4[

−5

(
√
3

2

)

−2(

−1

2

)

− 6

(
√
3

2

)

−4(

−1

2

)3]

=

(

π

6

)4[
5

2
· 4
3
+

3

4
· 16
9

]

=
π4

1296

(

10

3
+

4

3

)

=
π4

1296
· 14
3

=
7π4

648 · 3 ,
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making

2z′′′(3) =
7π4

324 · 3 =
7π4

972
.

Therefore, the value of the given integral is

7π4

972
.
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Also solved by the proposer.

123. [1998, 176] Proposed by Mohammad K. Azarian, University of Evansille,

Evansville, IN.

If xn+2/xn+1 = xn, n ≥ 0, x0 = 1, and x1 = e (e is the base for the natural
logarithm), then find

lim
n→∞

ln
(
∏n

i=0 x2i+1

)

lnx2n+1
.

Solution by Jim Vandergriff, Austin Peay State University, Clarksville, Ten-

nessee; Joseph Wiener, University of Texas - Pan American, Edinburg, Texas;

Reiner Martin, Deutsche Bank, Sevenoaks, Kent, England; N. J. Kuenzi, University

of Wisconsin - Oshkosh, Oshkosh, Wisconsin; Carl Libis, Antioch College, Yellow

Springs, Ohio; Kandasamy Muthuvel, University of Wisconsin - Oshkosh, Oshkosh,

Wisconsin; Jayanthi Ganapathy, University of Wisconsin - Oshkosh, Oshkosh, Wis-

consin; and the proposer.

lim
n→∞

ln
(
∏n

i=0 x2i+1

)

lnx2n+1
= lim

n→∞

F2n+2

F2n+1
=

1+
√
5

2
,

where Fn is the nth Fibonacci number.
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Proof. Note that

x0 = e0, x1 = e1, x2 = e1, x3 = e2, x4 = e3, x5 = e5, . . . , xn = eFn ,

where Fn is the nth Fibonacci number. (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for
n > 1.) Then lnxn = Fn. Thus, for n ≥ 0, we have

ln
(
∏n

i=0 x2i+1

)

lnx2n+1
=

∑n
i=0

(

lnx2i+1

)

lnx2n+1
=

∑n
i=0 F2i+1

F2n+1
.

Using the well-known identity,

n
∑

i=0

F2i+1 = F2n+2,

we have

∑n
i=0 F2i+1

F2n+1
=

F2n+2

F2n+1
.

Using another well-known identity,

lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
,

we have

lim
n→∞

F2n+2

F2n+1
= lim

n→∞

Fn+1

Fn
=

1 +
√
5

2
.

124. [1998, 176; 1999, 45–46] Proposed by Larry Hoehn, Austin Peay State

University, Clarksville, Tennessee.

Let △ABC be inscribed in a circle and △A′B′C′ be circumscribed about the
same circle such that the corresponding sides are parallel. Let D′, E′, and F ′ be
the midpoints of sides B′C′, C′A′, and A′B′, respectively. Prove that AD′, BE′,
and CF ′ are concurrent. (See figure on next page.)
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Solution I by the proposer.

The circle in the problem is irrelevant to its solution. It was included to show
how the problem originated. In the figure on the next page, we omit the circle for
clarity and label the segments as shown.
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Our goal is to use Ceva’s theorem; that is, if we can show that

a

b
· c
d
· e
f
= 1

in △ABC, then AD, BE, and CF are concurrent.
(1) Since lines AB and A′B′ are parallel for △ABC and since D′ and E′ are

midpoints, then

s

p
=

s′

p′
=

n′ + f ′ + e′

m′ + a′ + b′
=

(e′ + s′) + e′

(b′ + p′) + b′
=

2e′ + s′

2b′ + p′
.

Hence, p(2e′ + s′) = s(2b′ + p′) which can be rewritten as

s

p
=

e′

b′
,
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since ps′ = p′s. In the same manner

m

r
=

a′

d′
and

q

n
=

c′

f ′
.

(2) Since AB ‖ A′B′ for △ABC, then

a+ b

p
=

f + e

s

which can be rewritten as

s

p
=

e+ f

a+ b
.

Similarly,

q

n
=

c+ d

e + f
and

m

r
=

a+ b

c+ d
.

(3) Since △AFC ∼ △A′′F ′C, △FBC ∼ △F ′B′′C, and lines AB and A′B′ are
parallel for △ABC, then

c

c′
=

a+ b

p
,

f + e

s
=

d

d′
, and

a+ b

p
=

f + e

s
.

Hence

c

c′
=

d

d′
, or

c

d
=

c′

d′
.

Similarly,

a

b
=

a′

b′
and

e

f
=

e′

f ′
.
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(4) Therefore, using steps 3, 1, and 2 and some algebra, we have

a

b
· c
d
· e
f
=

a′

b′
· c

′

d′
· e

′

f ′

=
a′

d′
· c

′

f ′
· e

′

b′

=
m

r
· q
n
· s
p

=
a+ b

c+ d
· c+ d

e+ f
· e+ f

a+ b

= 1.

Therefore, by Ceva’s theorem, AD′, BE′, and CF ′ are concurrent.

Solution II by the proposer.

Since D′, E′, and F ′ are midpoints of the sides of △A′B′C′, then △D′E′F ′

has its sides parallel to corresponding sides of △A′B′C′, and hence also parallel to
corresponding sides of △ABC. Therefore, lines AB and D′E′, lines BC and E′F ′,
and lines CA and D′F ′ meet in three ideal points which are collinear on an ideal
line.

By Desargues’ theorem, which says that if two triangles are situated so that
lines joining corresponding vertices of the triangles are concurrent, then the corre-
sponding sides of the two triangles meet in three points which are collinear, and
conversely, we have that the lines AD′, BE′, and CF ′ are concurrent.



VOLUME 12, NUMBER 1, WINTER 2000 67

Solution III by Clayton W. Dodge, University of Maine, Orono, Maine.

It is known that triangle D′E′F ′ has its sides parallel to and exactly half the
length of the corresponding sides of triangle A′B′C′. Thus they are parallel to those
of triangle ABC and hence triangles ABC and D′E′F ′ are directly similar. Fur-
thermore, unless triangle ABC is equilateral, triangleD′E′F ′ is larger than triangle
ABC since its vertices lie on or outside the circumcircle of triangle A′B′C′ with
at least one vertex outside. It is known and easy to prove that if two triangles are
similar and have corresponding sides parallel and either they are not congruent or a
180◦ rotation carries one to the other, then the three lines joining their correspond-
ing vertices concur. When the two triangles are congruent and one is a translation
of the other, then the three joins of their corresponding vertices are parallel and
not concurrent. This situation cannot occur here, since even when triangle ABC
is equilateral, then it is a 180◦ rotation and not a translation that maps triangle
ABC to triangle D′E′F ′. Hence the stated lines concur.

To prove the theorem stated above, let BE′ and CF ′ meet atK. Then triangles
KBC and KE′F ′ are similar and their ratio of similarity is r = BC/E′F ′. Now on
line KA locate point D′′ so that K is between A and D′′ and KA/KD′′ = r. By
the similar triangles formed it follows that D′′ ≡ D′. That is, AD′, BE′, and CF ′

meet at K.


