A"DOUBLE" CAUCHY-SCHWARZ TYPE INEQUALITY

Manolis Magiropoulos and Dimitri Karayannakis

Abstract. A "double" version of the C-S inequality in any complex pre-Hilbert space is given, along with some numerical applications.

A substantial part of the mathematical folklore in the frame of inner-product spaces involves applications and/or extensions of the Cauchy-Schwarz (C-S) inequality

$$
|\langle e, f\rangle| \leq\|e\|\|f\|,
$$

where by $\|\cdot\|$ we indicate the norm induced by the inner-product \langle,$\rangle .$
For the case of a (real) Hilbert space M. Lambrou (Univ. of Crete) indicated to the second author, by personal communication, the following "double" version of the C-S inequality.

$$
\begin{equation*}
|\langle e, f\rangle||\langle e, g\rangle| \leq \frac{1}{2}\{\|f\|\|g\|+|\langle f, g\rangle|\}\|e\|^{2} \tag{*}
\end{equation*}
$$

(Note that if f, g are considered to be linearly dependent we simply obtain the C-S inequality.)

The fact that the R.H.S. of $(*)$ provides a better bound than the "natural" $\|e\|^{2}\|f\|\|g\|$ is evident by use of the C-S inequality itself. That (*) gives, in certain cases, a much better bound for $|\langle e, f\rangle \|\langle e, g\rangle|$ becomes clear from the following example.

Let $f=\sin x, g=\cos x, e=1 / x$ be considered as members of the classical Hilbert space $L^{2}[\alpha, \beta], \alpha>0$. Then

$$
|\langle e, f\rangle||\langle e, g\rangle| \leq\left(\int_{\alpha}^{\beta} \frac{d x}{x^{2}}\right)\left(\int_{\alpha}^{\beta} \sin ^{2} x d x\right)^{1 / 2}\left(\int_{\alpha}^{\beta} \cos ^{2} x d x\right)^{1 / 2}
$$

On the other hand $(*)$ provides the bound

$$
\frac{1}{2}\left(\int_{\alpha}^{\beta} \frac{d x}{x^{2}}\right)\left[\left(\int_{\alpha}^{\beta} \sin ^{2} x d x\right)^{1 / 2}\left(\int_{\alpha}^{\beta} \cos ^{2} x d x\right)^{1 / 2}+\left|\int_{\alpha}^{\beta} \sin x \cos x d x\right|\right]
$$

Subtracting the $(*)$-bound from the C-S-bound one has

$$
\begin{aligned}
\frac{1}{8}\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)\left[(\beta-\alpha+\sin 2 \alpha-\sin 2 \beta)^{1 / 2}(\beta\right. & -\alpha+\sin 2 \beta-\sin 2 \alpha)^{1 / 2} \\
& -|\cos 2 \beta-\cos 2 \alpha|]
\end{aligned}
$$

which increases to $+\infty$ for a (number of) suitable limit behavior of α or β.
In the present work we present an elementary proof of $(*)$ for any pre-Hilbert space over the complex field (which naturally also covers the real case), along with a few applications of $(*)$.

Theorem 1. Let e, f, g be elements of a complex pre-Hilbert space $(H,\langle\rangle$,$) ;$ then

$$
2|\langle e, f\rangle||\langle e, g\rangle| \leq\{\|f\|\|g\|+|\langle f, g\rangle|\}\|e\|^{2}
$$

Proof. Based on a previous remark, let f, g be linearly independent, and let $e=\lambda f+\mu g$. W.L.O.G. we may also assume that $\|e\|=\|f\|=\|g\|=1$. If $f \perp g$ the L.H.S. of $(*)$ becomes $2|\lambda||\mu|$ whereas the R.H.S. becomes $|\lambda|^{2}+|\mu|^{2}$ and we are done. If f and g are not orthogonal to each other, by the GramSchmidt construction we obtain $e=k f+s h$ with $h=(g-c f)\left(1-|c|^{2}\right)^{-1 / 2}$ with $c=\langle g, f\rangle \neq 0,1$. Then $h \perp f$ and $\|h\|=1$. It is easily seen that we may consider $c>0$ since, otherwise, by switching from f to $(c f) /|c|$ we find ourselves in an equivalent position. Then $|\kappa|^{2}+|s|^{2}=1$ with $\kappa=\langle e, f\rangle$ and $s=\langle e, h\rangle$. In a similar manner we may assume that $\kappa \geq 0$. Then

$$
|\langle e, f\rangle||\langle e, g\rangle|=\kappa\left|\kappa c+s\left(1-c^{2}\right)^{1 / 2}\right|
$$

But

$$
\begin{aligned}
\left|\kappa c+s\left(1-c^{2}\right)^{1 / 2}\right|^{2}=\kappa^{2} c^{2}+2 \operatorname{Re}\left(\kappa c\left(1-c^{2}\right)^{1 / 2} s\right) & +|s|^{2}\left(1-c^{2}\right) \\
& \leq\left(\kappa c+|s|\left(1-c^{2}\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
|\langle e, f\rangle||\langle e, g\rangle| \leq \kappa^{2} c+\kappa\left(1-\kappa^{2}\right)^{1 / 2}\left(1-c^{2}\right)^{1 / 2} \tag{**}
\end{equation*}
$$

Using the first derivative criterion, etc. for local extremes, it can be easily seen that the R.H.S. of $(* *)$ is bounded by $(1+c) / 2$ and we are done.

It remains now to prove $(*)$ for the case $e \notin \operatorname{sp}\{f, g\}$. Then, $e=e_{1}+e_{2}$ with $e_{1} \in \operatorname{sp}\{f, g\}$ and $e_{2} \perp \operatorname{sp}\{f, g\}$. The L.H.S. of $(*)$ becomes

$$
2|\langle e, f\rangle||\langle e, g\rangle| \leq\{\|f\|\|g\|+|\langle f, g\rangle|\}\left\|e_{1}\right\|^{2}
$$

because of the first part. Since $\left\|e_{1}\right\| \leq\|e\|$ we obtain the announced result. Q.E.D.
In case $(H,\langle\cdot\rangle)$ is Hilbert, we can generalize $(*)$ as follows.
Theorem 2. For any projection P and any vectors f, g

$$
2|\langle P f, g\rangle| \equiv 2|\langle P f, P g\rangle| \leq\|f\|\|g\|+|\langle f, g\rangle| .
$$

Proof. Let $Q=I-P$. Then

$$
\|f\|^{2}=\|P f\|^{2}+\|Q f\|^{2}, \quad\|g\|^{2}=\|P g\|^{2}+\|Q g\|^{2}
$$

Since

$$
\langle f, g\rangle=\langle P f, P g\rangle+\langle Q f, Q g\rangle
$$

by the classical Schwarz inequality we have

$$
|\langle f, g\rangle| \geq|\langle P f, P g\rangle|-\|Q f\| \cdot\|Q g\| .
$$

Therefore, for the assertion, it suffices to prove that

$$
|\langle P f, P g\rangle|+\|Q f\| \cdot\|Q g\| \leq \sqrt{\left(\|P f\|^{2}+\|Q f\|^{2}\right)\left(\|P g\|^{2}+\|Q g\|^{2}\right)}
$$

Then, using the classical Schwarz inequality once more, it suffices to prove

$$
\|P f\| \cdot\|P g\|+\|Q f\| \cdot\|Q g\| \leq \sqrt{\left(\|P f\|^{2}+\|Q f\|^{2}\right)\left(\|P g\|^{2}+\|Q g\|^{2}\right)}
$$

which is nothing but the classical Cauchy inequality.
Remark. The result of $(*)$ in the case where $(H,\langle\cdot\rangle)$ of Theorem 1 is considered complete corresponds to the case where $\operatorname{rank}(P)=1$.

We turn now to a couple of applications of Theorem 1 starting with a complex Hilbert space $(H,\langle\rangle$,$) .$
(i) Notice first that if f and g in H are mutually orthogonal then $(*)$ reduces to

$$
\begin{equation*}
2|\langle e, f\rangle||\langle e, g\rangle| \leq\|e\|^{2}\|f\|\|g\| \tag{***}
\end{equation*}
$$

If now $e \in H$ and $\left\{f_{i}\right\}, i \in I$, an orthogonal family in H, we can consider finite products of the Fourier coefficients of e w.r.t. $\left\{f_{i}\right\}$ namely

$$
\prod_{j \in J}\left|\left\langle e, f_{j}\right\rangle\right|
$$

where $J \subset I$ a finite set with at least two elements (in which case, naturally, we also impose $\operatorname{dim} H \geq 2$). It is evident that the C-S inequality would have provided the crude (upper) bound $\|e\|^{n}$, where n is the cardinality of J.

In view of $(* * *)$ though, we obtain the following far better bound, namely:

$$
\prod_{j \in J}\left|\left\langle e, f_{j}\right\rangle\right| \leq \begin{cases}2^{-n / 2}\|e\|^{n}, & \text { if } \mathrm{n} \text { is even } \\ 2^{-(n-1) / 2}\|e\|^{n}, & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

(ii) For another application of $(*)$ let us employ the pre-Hilbert space $L^{1}(0,+\infty)$ and consider its (linearly independent) elements

$$
\frac{\sin x}{x}, \frac{\cos 2 x}{1+x^{2}} \text { and } \frac{1}{1+x^{2}}
$$

in the roles of e, f and g, respectively. The direct calculation of $I=\langle e, f\rangle$ is a rather painful experience within the techniques of contour integration, or even by tracing it in suitable tables.

On the other hand by elementary contour integration and/or by reference to [1], we have

$$
\begin{gathered}
\langle e, g\rangle=\frac{\pi}{2}\left(1-e^{-1}\right), \quad\|f\|=\left[\frac{\pi}{8}\left(1+5 e^{-4}\right)\right]^{1 / 2}, \quad\|g\|=\frac{\pi^{1 / 2}}{2} \\
\langle f, g\rangle=\frac{3}{4} \pi e^{-2}, \quad \text { and }\|e\|^{2}=\frac{\pi}{2}
\end{gathered}
$$

Thanks to $(*)$ we obtain the following (strict) upper bound

$$
I<\frac{\pi}{8\left(1-e^{-1}\right)}\left[\left(\frac{1}{2}+\frac{5}{2} e^{-4}\right)^{1 / 2}+3 e^{-2}\right]<0.7112
$$

Reference

1. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, ed. A. Jeffrey, Academic Press, 1980.

Manolis Magiropoulos
Technological \& Educational Institute of Crete Heraklion, Greece
email: mageir@stef.teiher.gr
Dimitri Karayannakis
Technological \& Educational Institute of Crete
Heraklion, Greece
email: dkar@stef.teiher.gr

