A "DOUBLE" CAUCHY-SCHWARZ TYPE INEQUALITY

Manolis Magiropoulos and Dimitri Karayannakis

Abstract. A "double" version of the C-S inequality in any complex pre-Hilbert space is given, along with some numerical applications.

A substantial part of the mathematical folklore in the frame of inner-product spaces involves applications and/or extensions of the Cauchy-Schwarz (C-S) inequality

$$|\langle e, f \rangle| \le ||e|| ||f||.$$

where by $\|\cdot\|$ we indicate the norm induced by the inner-product \langle,\rangle .

For the case of a (real) Hilbert space M. Lambrou (Univ. of Crete) indicated to the second author, by personal communication, the following "double" version of the C-S inequality.

$$|\langle e, f \rangle| \ |\langle e, g \rangle| \le \frac{1}{2} \{ \|f\| \ \|g\| + |\langle f, g \rangle| \} \|e\|^2.$$
 (*)

(Note that if f, g are considered to be linearly dependent we simply obtain the C-S inequality.)

The fact that the R.H.S. of (*) provides a better bound than the "natural" $||e||^2 ||f|| ||g||$ is evident by use of the C-S inequality itself. That (*) gives, in certain cases, a much better bound for $|\langle e, f \rangle || \langle e, g \rangle|$ becomes clear from the following example.

Let $f = \sin x$, $g = \cos x$, e = 1/x be considered as members of the classical Hilbert space $L^2[\alpha, \beta], \alpha > 0$. Then

$$|\langle e, f \rangle| \ |\langle e, g \rangle| \le \left(\int_{\alpha}^{\beta} \frac{dx}{x^2}\right) \left(\int_{\alpha}^{\beta} \sin^2 x dx\right)^{1/2} \left(\int_{\alpha}^{\beta} \cos^2 x dx\right)^{1/2}.$$

On the other hand (*) provides the bound

$$\frac{1}{2} \left(\int_{\alpha}^{\beta} \frac{dx}{x^2} \right) \left[\left(\int_{\alpha}^{\beta} \sin^2 x dx \right)^{1/2} \left(\int_{\alpha}^{\beta} \cos^2 x dx \right)^{1/2} + \left| \int_{\alpha}^{\beta} \sin x \cos x dx \right| \right].$$

Subtracting the (*)-bound from the C-S-bound one has

$$\frac{1}{8} \left(\frac{1}{\alpha} - \frac{1}{\beta}\right) \left[(\beta - \alpha + \sin 2\alpha - \sin 2\beta)^{1/2} (\beta - \alpha + \sin 2\beta - \sin 2\alpha)^{1/2} - |\cos 2\beta - \cos 2\alpha| \right],$$

which increases to $+\infty$ for a (number of) suitable limit behavior of α or β .

In the present work we present an elementary proof of (*) for any pre-Hilbert space over the complex field (which naturally also covers the real case), along with a few applications of (*).

<u>Theorem 1</u>. Let e, f, g be elements of a complex pre-Hilbert space (H, \langle, \rangle) ; then

$$2|\langle e, f \rangle| |\langle e, g \rangle| \le \{ \|f\| \|g\| + |\langle f, g \rangle| \} \|e\|^2.$$

<u>Proof.</u> Based on a previous remark, let f, g be linearly independent, and let $e = \lambda f + \mu g$. W.L.O.G. we may also assume that ||e|| = ||f|| = ||g|| = 1. If $f \perp g$ the L.H.S. of (*) becomes $2|\lambda| \mid \mu|$ whereas the R.H.S. becomes $|\lambda|^2 + |\mu|^2$ and we are done. If f and g are not orthogonal to each other, by the Gram-Schmidt construction we obtain e = kf + sh with $h = (g - cf)(1 - |c|^2)^{-1/2}$ with $c = \langle g, f \rangle \neq 0, 1$. Then $h \perp f$ and ||h|| = 1. It is easily seen that we may consider c > 0 since, otherwise, by switching from f to (cf)/|c| we find ourselves in an equivalent position. Then $|\kappa|^2 + |s|^2 = 1$ with $\kappa = \langle e, f \rangle$ and $s = \langle e, h \rangle$. In a similar manner we may assume that $\kappa \geq 0$. Then

$$|\langle e, f \rangle| |\langle e, g \rangle| = \kappa |\kappa c + s(1 - c^2)^{1/2}|.$$

But

$$\begin{aligned} |\kappa c + s(1 - c^2)^{1/2}|^2 &= \kappa^2 c^2 + 2\operatorname{Re}(\kappa c(1 - c^2)^{1/2} s) + |s|^2 (1 - c^2) \\ &\leq (\kappa c + |s|(1 - c^2)^{1/2})^2 \end{aligned}$$

Thus,

$$|\langle e, f \rangle| |\langle e, g \rangle| \le \kappa^2 c + \kappa (1 - \kappa^2)^{1/2} (1 - c^2)^{1/2}.$$
(**)

Using the first derivative criterion, etc. for local extremes, it can be easily seen that the R.H.S. of (**) is bounded by (1 + c)/2 and we are done.

It remains now to prove (*) for the case $e \notin \operatorname{sp}\{f, g\}$. Then, $e = e_1 + e_2$ with $e_1 \in \operatorname{sp}\{f, g\}$ and $e_2 \perp \operatorname{sp}\{f, g\}$. The L.H.S. of (*) becomes

$$2|\langle e, f \rangle| |\langle e, g \rangle| \le \{ \|f\| \|g\| + |\langle f, g \rangle| \} \|e_1\|^2,$$

because of the first part. Since $||e_1|| \leq ||e||$ we obtain the announced result. Q.E.D. In case $(H, \langle \cdot \rangle)$ is Hilbert, we can generalize (*) as follows.

<u>Theorem 2</u>. For any projection P and any vectors f, g

$$2|\langle Pf,g\rangle| \equiv 2|\langle Pf,Pg\rangle| \le ||f|| ||g|| + |\langle f,g\rangle|.$$

<u>Proof.</u> Let Q = I - P. Then

$$||f||^2 = ||Pf||^2 + ||Qf||^2, \quad ||g||^2 = ||Pg||^2 + ||Qg||^2.$$

Since

$$\langle f,g\rangle = \langle Pf,Pg\rangle + \langle Qf,Qg\rangle,$$

by the classical Schwarz inequality we have

$$|\langle f,g\rangle| \ge |\langle Pf,Pg\rangle| - \|Qf\| \cdot \|Qg\|.$$

Therefore, for the assertion, it suffices to prove that

$$|\langle Pf, Pg \rangle| + ||Qf|| \cdot ||Qg|| \le \sqrt{(||Pf||^2 + ||Qf||^2)(||Pg||^2 + ||Qg||^2)}$$

Then, using the classical Schwarz inequality once more, it suffices to prove

$$||Pf|| \cdot ||Pg|| + ||Qf|| \cdot ||Qg|| \le \sqrt{(||Pf||^2 + ||Qf||^2)(||Pg||^2 + ||Qg||^2)}$$

which is nothing but the classical Cauchy inequality.

<u>Remark</u>. The result of (*) in the case where $(H, \langle \cdot \rangle)$ of Theorem 1 is considered complete corresponds to the case where rank(P) = 1.

We turn now to a couple of applications of Theorem 1 starting with a complex Hilbert space (H, \langle, \rangle) .

(i) Notice first that if f and g in H are mutually orthogonal then (\ast) reduces to

$$2|\langle e, f \rangle| \ |\langle e, g \rangle| \le ||e||^2 \ ||f|| \ ||g|| \tag{***}$$

If now $e \in H$ and $\{f_i\}$, $i \in I$, an orthogonal family in H, we can consider finite products of the Fourier coefficients of e w.r.t. $\{f_i\}$ namely

$$\prod_{j\in J} |\langle e, f_j \rangle|,$$

where $J \subset I$ a finite set with at least two elements (in which case, naturally, we also impose dim $H \geq 2$). It is evident that the C-S inequality would have provided the crude (upper) bound $||e||^n$, where n is the cardinality of J.

In view of (* * *) though, we obtain the following far better bound, namely:

$$\prod_{j \in J} |\langle e, f_j \rangle| \le \begin{cases} 2^{-n/2} ||e||^n, & \text{if n is even;} \\ 2^{-(n-1)/2} ||e||^n, & \text{if n is odd.} \end{cases}$$

(ii) For another application of (*) let us employ the pre-Hilbert space $L^1(0, +\infty)$ and consider its (linearly independent) elements

$$\frac{\sin x}{x}$$
, $\frac{\cos 2x}{1+x^2}$ and $\frac{1}{1+x^2}$

in the roles of e, f and g, respectively. The direct calculation of $I = \langle e, f \rangle$ is a rather painful experience within the techniques of contour integration, or even by tracing it in suitable tables.

On the other hand by elementary contour integration and/or by reference to [1], we have

$$\begin{split} \langle e,g\rangle &= \frac{\pi}{2}(1-e^{-1}), \quad \|f\| = \left[\frac{\pi}{8}(1+5e^{-4})\right]^{1/2}, \quad \|g\| = \frac{\pi^{1/2}}{2}, \\ \langle f,g\rangle &= \frac{3}{4}\pi e^{-2}, \quad \text{and} \quad \|e\|^2 = \frac{\pi}{2}. \end{split}$$

Thanks to (*) we obtain the following (strict) upper bound

$$I < \frac{\pi}{8(1-e^{-1})} \left[\left(\frac{1}{2} + \frac{5}{2}e^{-4} \right)^{1/2} + 3e^{-2} \right] < 0.7112.$$

Reference

 I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series and Products*, ed. A. Jeffrey, Academic Press, 1980.

Manolis Magiropoulos Technological & Educational Institute of Crete Heraklion, Greece email: mageir@stef.teiher.gr

Dimitri Karayannakis Technological & Educational Institute of Crete Heraklion, Greece email: dkar@stef.teiher.gr