
12 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

TOTAL CHARACTERS OF DIHEDRAL

GROUPS AND SHARPNESS

Eirini Poimenidou and Amy Cottrell

Abstract. We define the total character τ of a finite group G as the sum of
all its irreducible characters. A question of K. W. Johnson asks whether the total
character of a finite group can be expressed as a polynomial with integer coefficients
in some irreducible character χ of G. We show that in the case of dihedral groups
of twice odd order the question has an affirmative answer and we give the explicit
polynomial.

1. Sharp Characters. It is a well known result of Burnside (Theorem
4.3 in [3]) that if χ is a faithful character of a finite group G that takes on k
distinct values, then every irreducible character of G appears as a constituent of
at least one of χ, χ2, . . . , χk−1. A strengthening of this result is obtained in a
modern context by Cameron and Kiyota as follows. Let G be a finite group, χ be a
generalized character of G of degree n, and L = {χ(g) | g 6= 1}. With this notation,
Cameron and Kiyota proved in [1] in Theorem 1.1 that if fL(x) =

∏

l∈L(x − l),
then fL(x) ∈ Z[x] and |G| divides fL(n). In the special case that fL(n) = |G|, the
character χ is said to be sharp. Another way to characterize a sharp character is
to notice that fL(χ) =

∏

l∈L(χ − l1G) = ρ, where ρ is the character afforded by
the right regular representation of G and 1G is the trivial character of G. In other
words, every irreducible character of G appears as a constituent of fL(χ). In the
same spirit, we define the total character τ of G to be the sum of all irreducible
characters of G:

τ =
∑

χ∈Irr(G)

χ.

A natural question that was raised first by Kenneth W. Johnson in private corre-
spondence [5] is the following:

Question 1.1. For a finite group G does there necessarily exist an irreducible
character χ and a monic polynomial f(x) ∈ Z[x] such that f(χ) = τ , where τ is
the total character of G?

In this paper we show that if χ is any faithful irreducible character of a dihedral
group of twice odd order, then Question 1.1 has an affirmative answer. In particular
we prove the following theorem.

Theorem A. Let G be a dihedral group of order 2n with n odd. If χ is any
faithful irreducible character of G, then a monic polynomial g(x) ∈ Z[x] exists such
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that g(χ) = τ , where τ is the total character of G. Furthermore g(x) is minimal
with this property.

In section 2 we compute the total characters of all dihedral groups. In section
3, we prove first in Theorem 3.2 that all faithful irreducible characters of D2n with
n odd are sharp and then we proceed to prove our main Theorem in 3.7. It turns
out that if n ≡ 1 or 3 (mod 8) then g(x) has degree (n + 1)/2 but if n ≡ 5 or 7
(mod 8) then we can get a polynomial of degree (n− 1)/2.

Example 1.2. Recall the character table for S3:

gi (1) (12) (123)
hi 1 3 2
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1
τ 4 0 1

where gi denotes a representative of the i-th conjugacy class and hi is the size of
the i-th conjugacy class.

Notice that χ3 is sharp since L = {0,−1}, fL(x) = x(x + 1), and fL(2) =
2(2 + 1) = 6 = |S3|. Clearly, χ

2
3 = τ . Hence, g(x) = x2.

Example 1.3. The complete character table of S4 is:

gi (1) (12) (123) (12)(34) (1234)
hi 1 6 8 3 6
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 −1 2 0
χ4 3 1 0 −1 −1
χ5 3 −1 0 −1 1
τ 10 0 1 2 0

Observe that both χ4 and χ5 are sharp with L = {−1, 0, 1}. Assume that g(x) exists
such that g(χ4) = τ . But that would mean that g(χ4)((12)(34)) = g(−1) = 2 and
g(χ4)(1234) = g(−1) = 0. No polynomial will satisfy that condition. Similarly for
χ5. In fact, Johnson’s question has a negative answer for any irreducible character
of S4 as one easily checks.
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2. Total Characters of Dihedral Groups. Let G be the dihedral group
D2n of order 2n with n ≥ 3, so that

G = 〈a, b : an = b2 = 1, b−1ab = a−1〉.

Using the notation in [4] we consider the character table of G for n odd and n even.
We use gi and hi to denote a representative and the size of the i-th conjugacy class
respectively.

Case 1. n odd.

The conjugacy classes of D2n (n odd) are:

{1}, {ar, a−r} (1 ≤ r ≤ (n− 1)/2), {asb | 0 ≤ s ≤ n− 1}.

The character table of D2n (n odd) where ǫ = e2πi/n is as follows:

gi 1 ar (1 ≤ r ≤ (n− 1)/2) b
hi 1 2 n
χ1 1 1 1
χ2 1 1 −1
ψj 2 ǫjr + ǫ−jr 0

(1 ≤ j ≤ (n− 1)/2)

Case 2. n even.

If n is even, say n = 2m, then the conjugacy classes of D2n are:

{1}, {am}, {ar, a−r} (1 ≤ r ≤ m− 1), {asb | s even}, {asb | s odd}.

The character table of D2n (n even, n = 2m, ǫ = e2πi/n) is given below:

gi 1 am ar (1 ≤ r ≤ m− 1) b ab
hi 1 1 2 (n/2) (n/2)
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)m (−1)r 1 −1
χ3 1 (−1)m (−1)r −1 1
ψj 2 2(−1)j ǫjr + ǫ−jr 0 0

(1 ≤ j ≤ m− 1)
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We are now ready to compute the total character for dihedral groups.

Proposition 2.1.

1. The total character τ of D2n, n odd, is:

gi 1 ar (1 ≤ r ≤ (n− 1)/2) b
hi 1 2 n
τ n+ 1 1 0

2. The total character τ of G = D2n, n = 2m, is:

gi 1 am ar b ab

τ 2(m+ 1)

{

0 m odd

2 m even

{

0, r odd

2, r even
0 0

Proof. When n is odd we clearly have that τ(1) = 2 + 2(n− 1)/2 = n+ 1 and
τ(b) = 0. An easy computation yields

τ(ar) = 2 +

(n−1)/2
∑

j=1

(ǫjr + ǫ−jr) =
1− ǫr(n+1)/2

1− ǫr
+

1− ǫ−r(n+1)/2

1− ǫ−r
.

Recall that ǫ = e(2πi)/n and note that e((n+1)irπ)/n = (−1)re(irπ)/n =
(−1)rer/2 and similarly e−((n+1)irπ)/n = (−1)re−(irπ)/n = (−1)rǫ−r/2.

For r odd we get

τ(ar) =
1 + ǫr/2

1− ǫr
+

1 + ǫ−r/2

1− ǫ−r
=

1 + ǫr/2

1− ǫr
− ǫr/2

1 + ǫr/2

1− ǫr
= 1.

Similar calculation for r even yield τ(ar) = 1 and we have completed the proof
of part 1 of Proposition 2.1.

Part 2 of Proposition 2.1 follows easily as above by examining separately the
cases for r odd and even.
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3. Polynomials of Sharp Characters in Dihedral Groups. Our strat-
egy in proving our main theorem will be to show first that all faithful irreducible
characters of dihedral groups of twice odd order are sharp. Then we proceed to
construct a polynomial p(x) such that p(χ) = τ on all non-identity elements where
χ = ψ1 (using the notation of section 2 for D2n with n odd). We notice first
that if such a polynomial exists, then τ(b) = 0 = p(ψ(b)) = p(0) = a0 and hence,
our polynomial will have zero constant term. In addition since τ(ar) = 1 for all
1 ≤ r ≤ (n − 1)/2 we must also have that p(ψ(ar)) = p(2 cos((2πr)/n)) = 1. The
arguments will easily extend to any faithful irreducible character ψj of D2n with n
odd. The following lemma is mentioned in [1] without proof. We include its proof
for completeness.

Lemma 3.1.

m−1
∏

k=1

2 sin

(

kπ

m

)

= m.

Proof. Let L = {e(2kiπ)/m | 1 ≤ k ≤ m− 1}. Then,

fL(x) =

m−1
∏

k=1

(

x− e(2kiπ)/m
)

= xm−1 + · · ·+ x+ 1.

Note that fL(1) = m, which implies that

m−1
∏

k=1

(

1− e(2kiπ)/m
)

= m.

Recall that

2 sin

(

kπ

m

)

=
1

i

(

e(kiπ)/m − e−(kiπ)/m
)

=
i
(

1− e(2kiπ)/m
)

e(kiπ)/m
.

This implies that

m−1
∏

k=1

2 sin

(

kπ

m

)

=
m−1
∏

k=1

i
(

1− e(2kiπ)/m
)

e(kiπ)/m
=

mim−1

∏m−1
k=1 e(kiπ)/m

.
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However,

m−1
∏

k=1

e(kiπ)/m = e(i(m−1)π)/2

=

(

cos

(

mπ

2

)

+ i sin

(

mπ

2

))(

cos

(

−π

2

)

+ i sin

(

−π

2

))

.

If m = 4b, then im−1 = i4b−1 = i4bi−1 = −i, and

(

cos

(

mπ

2

)

+ i sin

(

mπ

2

))(

cos

(

−π

2

)

+ i sin

(

−π

2

))

= (1 + 0i)(0− i) = −i.

Hence,

m−1
∏

k=1

2 sin

(

kπ

m

)

= m.

If m = 4b+ 1, then im−1 = i4b = 1, and

(

cos

(

mπ

2

)

+ i sin

(

mπ

2

))(

cos

(

−π

2

)

+ i sin

(

−π

2

))

= (0 + i)(0− i) = 1.

Hence,

m−1
∏

k=1

2 sin

(

kπ

m

)

= m.

Proceeding similarly for the remaining cases yields the result.

Theorem 3.2. Every faithful irreducible character of D2n (n odd) is sharp.

Proof. Consider ψ1 as defined previously in the character table of D2n. We
show first that ψ1 is sharp. We must first discern if there is any r, (1 ≤ r ≤ (n−1)/2)
such that 2 cos((2rπ)/n) = 2. Now, cos((2rπ)/n) = 1 whenever (2rπ)/n = 2kπ,
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k ∈ Z. Hence, we must have that r/n = k, k ∈ Z, but, 1 ≤ r ≤ (n − 1)/2. So,
r < n implies r/n 6∈ Z and we see that cos((2rπ)/n) 6= 1 for any r such that
1 ≤ r ≤ (n− 1)/2. Hence, 2 cos((2rπ)/n) 6= 2, and ψ1 is faithful. Now, we have

(n−1)/2
∏

r=1

(

2− 2 cos

(

2rπ

n

))

=

(n−1)/2
∏

r=1

4 sin2
(

rπ

n

)

=

(n−1)/2
∏

r=1

2 sin

(

rπ

n

) (n−1)/2
∏

r=1

2 sin

(

rπ

n

)

.

Also recall that

sin

(

π −
rπ

n

)

= sinπ cos

(

rπ

n

)

− cosπ sin

(

rπ

n

)

= sin

(

rπ

n

)

.

Thus,

(n−1)/2
∏

r=1

2 sin

(

rπ

n

) (n−1)/2
∏

r=1

2 sin

(

rπ

n

)

=

(n−1)/2
∏

r=1

2 sin

(

rπ

n

) (n−1)/2
∏

r=1

2 sin

(

(n− r)π

n

)

.

Reindex the latter product by letting j = n− r and by letting j run from (n+1)/2
to n− 1. So, we now get:

(n−1)/2
∏

r=1

2 sin

(

rπ

n

) n−1
∏

j=(n+1)/2

2 sin

(

jπ

n

)

=

n−1
∏

r=1

2 sin

(

rπ

n

)

= n.

This is the crucial step in proving that ψ1 is sharp since

fL(x) = (x− 0)

(n−1)/2
∏

r=1

(

x− 2 cos

(

2rπ

n

))
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and hence, we get fL(2) = 2n = |G| and ψ1 must be sharp. Now consider ψj with
1 < j ≤ (n − 1)/2. It is not difficult to see that ψj is faithful if and only if j is
relatively prime to n. In that case the set of character values of ψj is the same as
that of ψ1 and the same arguments yield that all faithful irreducible characters of
D2n with n odd are sharp.

The following lemma is formula JO (570) in [2].

Lemma 3.3. For n odd,

n sin(x)

(n−1)/2
∏

k=1

(

1−
sin2(x)

sin2
(

kπ
n

)

)

= sin(nx).

Theorem 3.4.

(n−1)/2
∏

k=1

2 cos

(

2kπ

n

)

=



















1, n ≡ 1 (mod 8)

−1, n ≡ 3 (mod 8)

−1, n ≡ 5 (mod 8)

1, n ≡ 7 (mod 8).

Proof. Letting x = π/4 in the formula of Lemma 3.3 above, we get that

sin

(

nπ

4

)

= n sin

(

π

4

) (n−1)/2
∏

k=1

(

sin2
(

kπ
n

)

− 1
2

sin2
(

kπ
n

)

)

,

from whence we get

sin
(

nπ
4

)

n sin
(

π
4

) =

∏(n−1)/2
k=1

(

1
2

(

2 sin2
(

kπ
n

)

− 1
)

∏(n−1)/2
k=1 sin2

(

kπ
n

)

=

∏(n−1)/2
k=1 (−1) cos

(

2kπ
n

)

∏(n−1)/2
k=1

(

2 sin2
(

kπ
n

))
=

∏(n−1)/2
k=1 (−1)2 cos

(

2kπ
n

)

∏(n−1)/2
k=1 4 sin2

(

kπ
n

)

=
(−1)(n−1)/2

∏(n−1)/2
k=1

(

2 cos
(

2kπ
n

))

∏(n−1)/2
k=1 2 sin

(

kπ
n

)
=

(−1)(n−1)/2
∏(n−1)/2

k=1

(

2 cos
(

2kπ
n

))

n
.



20 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

This implies that

(n−1)/2
∏

k=1

2 cos

(

2kπ

n

)

= (−1)(n−1)/2 sin
(

nπ
4

)

sin
(

π
4

) .

If n = 8k + 1, then (n− 1)/2 = 4k, and (−1)(n−1)/2 = 1, and we have that

(n−1)/2
∏

k=1

2 cos

(

2kπ

n

)

=
sin

( (8k+1)π
4

)

sin
(

π
4

) =
sin

(

2kπ + π
4

)

sin
(

π
4

) =
sin

(

π
4

)

sin
(

π
4

) = 1.

Similar arguments for n congruent to 3, 5, 7 (mod 8) complete the proof.

Proposition 3.5. Let xr = 2 cos 2rπ
n for n odd and r = 1, . . . , (n − 1)/2. Let

t = (n− 1)/2. The system









xt1 xt−1
1 · · · x1

xt2 xt−1
2 · · · x2

...
...

...
...

xtt xt−1
t · · · xt

















at
at−1

...
a1









=









1
1
...
1









has a unique integer solution with

at =

{

−1, n = 1, 3 (mod 8)

1, n = 5, 7 (mod 8)

at−r = (−1)ratSr(x1, . . . , xt),

where Sr(x1, . . . , xt) is the r-th elementary symmetric function in x1, x2, . . . , xt.
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Proof. First observe that the uniqueness part follows easily since

det









xt1 xt−1
1 · · · x1

xt2 xt−1
2 · · · x2

...
...

...
...

xtt xt−1
t · · · xt









= x1x2 · · ·xt det









xt−1
1 xt−2

1 · · · 1
xt−1
2 xt−2

2 · · · 1
...

...
...

...
xt−1
t xt−2

t · · · 1









= x1x2 · · ·xt
∏

1≤i<j≤t

(xi − xj) 6= 0

using the well known formula for the Vandermonde determinant. Let p(x) = atx
t+

· · · + a1x such that p(xi) = 1 for all 1 ≤ i ≤ t. Note that p(xi) − 1 = 0 when
1 ≤ i ≤ t. We have p(x) − 1 = at(x − x1) · · · (x − xt). By equating the constant
terms, we see that (−1)tatx1 · · ·xt = −1. This in turn yields

at =
−(−1)t

x1 · · ·xt
.

Recall that t = (n− 1)/2.

If n ≡ 1 (mod 8), then (−1)t = 1 and x1 · · ·xt = 1. Hence, at = −1.

If n ≡ 3 (mod 8), then (−1)t = −1 and x1 · · ·xt = −1. Hence, at = −1.

If n ≡ 5 (mod 8), then (−1)t = 1 and x1 · · ·xt = −1. Hence, at = 1.

If n ≡ 7 (mod 8), then (−1)t = −1 and x1 · · ·xt = 1. Hence, at = 1.
The remaining coefficients are clearly given by at−r = (−1)ratSr(x1, . . . , xt),

where Sr(x1, . . . , xt) is the r-th elementary symmetric function in x1, x2, . . . , xt.
Recall that xr = ǫr+ǫ−r where ǫ is a primitive n-th root of unity. Therefore all of the
xr and hence, Sr(x1, . . . , xt) are algebraic integers. Note also that Sr(x1, . . . , xt)
remains invariant under the Galois automorphisms of Q(ǫ) over Q and is therefore
a rational integer. Hence, we have as desired that at−r ∈ Z.

As immediate consequences of the above, we get:

Corollary 3.6. Let n be an odd integer, xr = 2 cos((2rπ)/n) where 1 ≤ r ≤
(n− 1)/2. Let t = (n− 1)/2.

1. The polynomial

p(x) = −(x− x1) · · · (x − xt) + 1, n ≡ 1, 3 (mod 8)

has the property that p(0) = 0 and p(xr) = 1 for 1 ≤ r ≤ t.
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2. The polynomial

p(x) = (x − x1) · · · (x− xt) + 1, n ≡ 5, 7 (mod 8)

has the property that p(0) = 0 and p(xr) = 1 for 1 ≤ r ≤ t.

We are now ready to prove our main Theorem.

Theorem 3.7. Let G be a dihedral group of order 2n with n odd. If χ is any
faithful irreducible character of G, then a monic polynomial g(x) ∈ Z[x] exists such
that g(χ) = τ , where τ is the total character of G. Furthermore g(x) is minimal
with this property.

Proof. We need to examine separately the following two cases.

Case 1. n ≡ 5, 7 (mod 8).

Let χ = ψ1 be the irreducible character of D2n as labeled in its character
table previously. Let xr = ǫr + ǫ−r = 2 cos((2rπ)/n), 1 ≤ r ≤ (n − 1)/2 and
t = (n−1)/2. We show that g(x) = (x−x1) · · · (x−xt)+1 is the right polynomial.
We have established in Corollary 3.6 part 2, that g(x) ∈ Z[x] and that g(χ(ar)) =
g(xr) = 1 = τ(ar) and g(χ(b)) = g(0) = 0 = τ(b). We need only show that
g(χ(1)) = g(2) = τ(1) = n+ 1. Notice that since χ is sharp

(2− 0)

(n−1)/2
∏

j=1

(

2− 2 cos

(

2jπ

n

))

= 2n

and hence, we have that

(n−1)/2
∏

j=1

(

2− 2 cos

(

2jπ

n

))

= n.

Now it follows easily that

g(2) =

(n−1)/2
∏

j=1

(

2− 2 cos

(

2jπ

n

))

+ 1 = n+ 1 = τ(1)

as desired.
Notice that the result is true for any faithful irreducible character of G since

they all share the same set of character values and τ(ar) = 1 for all r.
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Case 2. n ≡ 1, 3 (mod 8).

Let p(x) = −(x−x1) · · · (x−xt)+1 and g(x) = (p(x)− 1)(−x+1)+1. Notice
that by Corollary 3.6 part 1, we have that p(0) = 0 and p(xr) = 1 and hence,
g(0) = 0 and g(xr) = 1. In addition

p(2) = −

(n−1)/2
∏

j=1

(

2− 2 cos

(

2jπ

n

))

= −n+ 1.

Hence, g(2) = (p(2) − 1)(−2 + 1) + 1 = (−n + 1 − 1)(−1) + 1 = n + 1 = τ(1)
as desired. As before the argument can be shown to be independent of the sharp
character we choose.

Notice that by construction both polynomials g(x) are minimal with the re-
quired properties.

Using GAP and Mathematica we can easily compute the polynomials for the
first few dihedral groups

D6 : x2

D10 : x2 + x

D14 : x3 + x2 − 2x

D18 : x5 − 4x3 + x2 + 3x

D22 : x6 − 5x4 + x3 + 6x2 − 2x

D26 : x6 + x5 − 5x4 − 4x3 + 6x2 + 3x

D30 : x7 + x6 − 6x5 − 5x4 + 10x3 + 6x2 − 4x.

4. Final Remarks and Some Questions. It appears that sharpness is
instrumental in answering Johnson’s question. In fact we are not aware of any
instances of a non-sharp character giving an affirmative answer to his question.
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In the case of dihedral groups of twice even order we are not always guaranteed
an irreducible sharp character. For example, if we look at the character table of
D12

gi 1 a3 a a2 b ab
hi 1 1 2 2 3 3
χ1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1
χ3 1 −1 −1 1 1 −1
χ4 1 −1 −1 1 −1 1
χ5 2 −2 1 −1 0 0
χ6 2 2 −1 1 0 0
τ 8 0 0 4 0 0

The only possibility for a sharp character is χ5. However, (2− (−2))(2−1)(2−
(−1))(2 − 0) = 4(1)(3)(2) = 24 6= 12 and D12 has no irreducible sharp characters.
It is easy to show that Johnson’s question has a negative answer on D12.

It appears however, that if a sharp character χ exists in a dihedral group of
twice even order then a polynomial g(x) ∈ Z[x] may exist such that g(χ) = τ as
is the case in D8 where if χ is the faithful irreducible character of degree 2, then
χ2 + χ = τ .

A natural question arising is therefore the following:

Question 4.1. If χ is an irreducible character of a finite group G such that for
some monic polynomial g(x) ∈ Z[x] we have g(χ) = τ , is χ necessarily sharp?
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