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PRIMITIVE ROOTS THE CYCLOTOMIC WAY
Joseph B. Dence

1. Introduction. Every prime possesses a primitive root. So stated (in an
equivalent way) J. H. Lambert in 1769; Legendre gave the first correct proof in
1785. Gauss, in 1801, published two proofs in his Disquisitiones Arithmeticae [3al.
This important theorem is standard material in any first course in number theory.
A survey of 21 number theory texts, both old and recent, shows the following
distribution of proofs:

(1) 13 texts prove the theorem with the aid of the following lemma on the Euler

¢-function [la-1,5al:
> o(d) = n;
d|n

(2) 2 texts use the Mdbius Inversion Formula, together with the lemma,

> uld)(n/d) = ¢(n),
d

also drawn from material on multiplicative functions [1f,m];

(3) 4 texts use only elementary facts on the orders of integers, and possibly also

Lagrange’s Theorem on roots in a field [1n—q];

(4) 2 texts use only Lagrange’s Theorem and the concept of the least (or minimal)
universal exponent (first introduced by R. D. Carmichael) [1r,s];

(5) 1 text employs an algebraic proof that considers the generation of various
subgroups of Zj [1f];
(6) 1 text uses Lagrange’s Theorem, together with a key result on orders of ele-

ments in finite Abelian groups [1t].

All of the above methods of proof have features of interest, and there are pros and
cons of each. Gauss’ own proofs belonged to methods (1) and (3).
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In this expository paper we present an alternative approach to primitive roots
that may appeal to some students. Although the theory is not new [6], it deserves
to be better known. The approach makes contact with the topic of cyclotomic
polynomials, which are both important [10] and interesting in their own right [2,7].

2. The Cyclotomic Polynomials. Let n > 1 be an integer; the nth cyclo-
tomic polynomial, ®,,(z), is defined as

@, () = [[@@ ).

¢

where ¢ spans all of the primitive nth roots of unity. We define ®1(z) = 2 — 1. The
three basic properties of the @, (z)’s that we shall require are [4]:

Property 1. The algebraic degree of ®,,(z) is ¢(n);
Property 2. All of the coefficients in ®,(z) are integers;
Property 3. For alln > 1, 2" — 1 =[], ®a().

For illustration, we show in Table 1 the first 16 cyclotomic polynomials. Despite
what Table 1 suggests, there are cyclotomic polynomials that possess arbitrarily
large coefficients [7,8].

n|®,(x) n |®,(z)

1z —1 9 |28 +23+1

2|z +1 10|z — a3+ 22 -2 +1

32+ +1 %4+ 2% 4284 2 +1
4122 +1 12|z — 22 +1

Slet+ a3+ a2+ x4+ 1 Bla2+ 2t + 20+ 4+ 1
6la2 —z+1 14|28 —2® + 2t — 23+ 22—z +1
Tl + a2+t + a3+ 22+ +1|15\a8 —a"+ 2 —2* + 2 -z + 1
8|zt +1 16|28 +1

Table 1. The Polynomials ®,,(z) for n = 1-16.

3. Zeros of the Cyclotomic Polynomials in Fields Zg. In what follows,
p is any prime and d (or d;) is any divisor of p — 1.
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Theorem 1. ®4(z) =0 (mod p) has ¢(d) roots.

Proof. % =1 (mod p) has d incongruent roots [5a,6]. Since, by Property 3,
z¢—1= Hdi|d<1>d(:v), then Property 1, together with Lagrange’s Theorem, forces
®4(x), in particular, to have ¢(d) zeros in Z,,.

Theorem 2. xq € Zj is a root of ®4(z) =0 (mod p) if and only if the order of
zo (mod p) is d.

Proof. Let the divisors of p — 1 be sequenced as follows: 1 =d; <dy < --- <
d, = p — 1. The theorem is trivially true for d = d;; assume it is also true for the
first k divisors of p— 1 (1 < k < n). We have

21 1 — H Dy (),

di|dgy1

and the dj11 roots of all the congruences {®4, () =0 (mod p)} are distinct. Sup-
pose the order of 2y (mod p) is dg41; then zq is a root of just one of the congruences
G4, () =0 (mod p). In fact, it must be the congruence corresponding to d; = dj+1,
since any of the smaller d;’s would imply a contradiction of the induction hypoth-
esis.

On the other hand, if z is one of the ¢(dy1) roots of @4, () =0 (mod p),
then :vgk“ —1 =0 (mod p) holds. The order of xq is thus dj1; for if the order
were h < dp41, then hldg; would be true and zy would be a root of ®,(x) =0
(mod p), which again is a contradiction of the induction hypothesis. Thus, the
theorem holds for d = dj41, and so is true for all divisors of p — 1.

Corollary. Every prime p has ¢(p — 1) primitive roots.

Proof. By Theorem 1, ®,_1(xz) =0 (mod p) has ¢(p — 1) roots, and by Theo-
rem 2 these are all of order p — 1.

In Table 2 we give an illustration of Theorem 2 for the case of p = 19.
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d|Roots of ®4(x) =0 (mod 19)| Order (mod 19) of the Roots
1 1 1
2 18 2
3 7.11 3
6 8,12 6
9 45,6,9,16,17 9
18 2,3,10,13,14,15 18

Table 2. Orders of the Zeros in Z,, of the Cyclotomic
Polynomial Factors Corresponding to p — 1 = 18.

4. A Subsidiary Result. Let S, denote the sum of the primitive roots of
the prime p. Gauss proved a congruence theorem for Sy; his argument was combi-
natorial in nature [3b]. We can establish the same result by means of cyclotomic
polynomials. If we write

then in view of Theorem 1 the sum of the roots of ®,,(z) =0 (mod p) is congruent

to —c(n, ¢(n) — 1), n|(p — 1). Gauss’ theorem is suggested by the very brief data
given in Table 3.

n D, (x) cn,op(n)—1) S, (mod p)
4(=2?) 2 +1 0 0
12(=22-3) zt— 2?2 +1 0 0
18(=2-3?%) 28— 23 +1 0 0
6(=2-3) 2 —x+1 -1 -1
10(=2-5) -+ a? -z +1 -1 -1
2 z+1 1 1
30(=2-3-5)|a® +2" —2® -2t —23 4z +1 1 1

Table 3. Selected ®,(z) When n is Squarefree (lower half)
or Not (upper half), and n + 1 is a Prime p.
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Theorem 3. If n = []i_, p{"*, then ¢(n,¢(n) — 1) = 0 if at least one a; > 1,
and c(n, p(n) — 1) = (—1)"~! otherwise.

Proof. The theorem is trivially true for the first nonsquarefree integer (n = 4)
and for all squarefree integers n > 1 for which r = 1 (i.e., primes). Assume it also
holds for the first £ nonsquarefree integers and the first k squarefree integers. Now,
on the one hand, let N = []_; p{"" be the (k+1)st nonsquarefree integer and define
m = []_, p;. We can write (using Property 3)

N1 N —1
B FEE by P T R e X TR K

where the d’s are squarefree divisors of N, 1 < d < N, and the D’s are nonsquarefree
divisors of N, 1 < D < N. The induction hypothesis gives us immediately that the
term of next-to-highest degree is absent in the denominator, and so upon division
the term of degree ¢(N) — 1 in ®x(z) is also absent. The first half of the theorem
follows by mathematical induction.

On the other hand, if N is the (k + 1)st squarefree integer, then there is no ex-
tended product over D’s. There are (k:;l) factors ®4(z), m = 0,1,2,...k, for which
d is the product of m distinct primes. By the induction hypothesis the coefficient
of the term of degree ¢(d) — 1 in each such ®4(z) is (—1)™~!. Multiplication of all
the ®4(x)’s with a common m and summation over all m gives for the coefficient

of the term of next-to-highest degree in [[, ®4(x) the value

k

o () = e

m
m=

Hence, upon division, the coefficient of the term of next-to-highest degree in

N -1
) = Bt

is (—1)% = (=1)*+1D=1, The second half of the theorem also holds by mathematical

induction.
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We note that Theorem 3 does not depend on n + 1 being a prime. However,
Gauss’ Theorem now follows straight off if in Theorem 3 we do take n=p—1>1
there.

Corollary. (Gauss) For any odd prime

g { 0 (mod p) if p — 1 is not squarefree
P

(=1)" (mod p) ifp—1=TI"_,pi

It may be noted that the Corollary can be applied, with slight modification, to
any of the sets of integers having a common order d, d|(p — 1) (see Table 2) [5b,9].
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