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PRIMITIVE ROOTS THE CYCLOTOMIC WAY

Joseph B. Dence

1. Introduction. Every prime possesses a primitive root. So stated (in an

equivalent way) J. H. Lambert in 1769; Legendre gave the first correct proof in

1785. Gauss, in 1801, published two proofs in his Disquisitiones Arithmeticae [3a].

This important theorem is standard material in any first course in number theory.

A survey of 21 number theory texts, both old and recent, shows the following

distribution of proofs:

(1) 13 texts prove the theorem with the aid of the following lemma on the Euler

φ-function [1a–l,5a]:
∑

d|n

φ(d) = n;

(2) 2 texts use the Möbius Inversion Formula, together with the lemma,

∑

d|n

µ(d)(n/d) = φ(n),

also drawn from material on multiplicative functions [1f,m];

(3) 4 texts use only elementary facts on the orders of integers, and possibly also

Lagrange’s Theorem on roots in a field [1n–q];

(4) 2 texts use only Lagrange’s Theorem and the concept of the least (or minimal)

universal exponent (first introduced by R. D. Carmichael) [1r,s];

(5) 1 text employs an algebraic proof that considers the generation of various

subgroups of Zx
p [1f];

(6) 1 text uses Lagrange’s Theorem, together with a key result on orders of ele-

ments in finite Abelian groups [1t].

All of the above methods of proof have features of interest, and there are pros and

cons of each. Gauss’ own proofs belonged to methods (1) and (3).
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In this expository paper we present an alternative approach to primitive roots

that may appeal to some students. Although the theory is not new [6], it deserves

to be better known. The approach makes contact with the topic of cyclotomic

polynomials, which are both important [10] and interesting in their own right [2,7].

2. The Cyclotomic Polynomials. Let n > 1 be an integer; the nth cyclo-

tomic polynomial, Φn(x), is defined as

Φn(x) =
∏

ζ

(x− ζ),

where ζ spans all of the primitive nth roots of unity. We define Φ1(x) = x− 1. The

three basic properties of the Φn(x)’s that we shall require are [4]:

Property 1. The algebraic degree of Φn(x) is φ(n);

Property 2. All of the coefficients in Φn(x) are integers;

Property 3. For all n ≥ 1, xn − 1 =
∏

d|nΦd(x).

For illustration, we show in Table 1 the first 16 cyclotomic polynomials. Despite

what Table 1 suggests, there are cyclotomic polynomials that possess arbitrarily

large coefficients [7,8].

n Φn(x) n Φn(x)

1 x− 1 9 x6 + x3 + 1

2 x+ 1 10 x4 − x3 + x2 − x+ 1

3 x2 + x+ 1 11 x10 + x9 + x8 + · · ·+ x+ 1

4 x2 + 1 12 x4 − x2 + 1

5 x4 + x3 + x2 + x+ 1 13 x12 + x11 + x10 + · · ·+ x+ 1

6 x2 − x+ 1 14 x6 − x5 + x4 − x3 + x2 − x+ 1

7 x6 + x5 + x4 + x3 + x2 + x+ 1 15 x8 − x7 + x5 − x4 + x3 − x+ 1

8 x4 + 1 16 x8 + 1

Table 1. The Polynomials Φn(x) for n = 1–16.

3. Zeros of the Cyclotomic Polynomials in Fields Zp. In what follows,

p is any prime and d (or di) is any divisor of p− 1.
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Theorem 1. Φd(x) ≡ 0 (mod p) has φ(d) roots.

Proof. xd ≡ 1 (mod p) has d incongruent roots [5a,6]. Since, by Property 3,

xd − 1 =
∏

di|d
Φd(x), then Property 1, together with Lagrange’s Theorem, forces

Φd(x), in particular, to have φ(d) zeros in Zp.

Theorem 2. x0 ∈ Z
x
p is a root of Φd(x) ≡ 0 (mod p) if and only if the order of

x0 (mod p) is d.

Proof. Let the divisors of p− 1 be sequenced as follows: 1 = d1 < d2 < · · · <

dn = p− 1. The theorem is trivially true for d = d1; assume it is also true for the

first k divisors of p− 1 (1 ≤ k < n). We have

xdk+1 − 1 =
∏

di|dk+1

Φdi
(x),

and the dk+1 roots of all the congruences {Φdi
(x) ≡ 0 (mod p)} are distinct. Sup-

pose the order of x0 (mod p) is dk+1; then x0 is a root of just one of the congruences

Φdi
(x) ≡ 0 (mod p). In fact, it must be the congruence corresponding to di = dk+1,

since any of the smaller di’s would imply a contradiction of the induction hypoth-

esis.

On the other hand, if x0 is one of the φ(dk+1) roots of Φdk+1
(x) ≡ 0 (mod p),

then x
dk+1

0 − 1 ≡ 0 (mod p) holds. The order of x0 is thus dk+1; for if the order

were h < dk+1, then h|dk+1 would be true and x0 would be a root of Φh(x) ≡ 0

(mod p), which again is a contradiction of the induction hypothesis. Thus, the

theorem holds for d = dk+1, and so is true for all divisors of p− 1.

Corollary. Every prime p has φ(p− 1) primitive roots.

Proof. By Theorem 1, Φp−1(x) ≡ 0 (mod p) has φ(p− 1) roots, and by Theo-

rem 2 these are all of order p− 1.

In Table 2 we give an illustration of Theorem 2 for the case of p = 19.
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d Roots of Φd(x) ≡ 0 (mod 19) Order (mod 19) of the Roots

1 1 1

2 18 2

3 7,11 3

6 8,12 6

9 4,5,6,9,16,17 9

18 2,3,10,13,14,15 18

Table 2. Orders of the Zeros in Zp of the Cyclotomic

Polynomial Factors Corresponding to p− 1 = 18.

4. A Subsidiary Result. Let Sp denote the sum of the primitive roots of

the prime p. Gauss proved a congruence theorem for Sp; his argument was combi-

natorial in nature [3b]. We can establish the same result by means of cyclotomic

polynomials. If we write

Φn(x) =

φ(n)
∑

k=0

c(n, k)xk,

then in view of Theorem 1 the sum of the roots of Φn(x) ≡ 0 (mod p) is congruent

to −c(n, φ(n) − 1), n|(p − 1). Gauss’ theorem is suggested by the very brief data

given in Table 3.

n Φn(x) c(n, φ(n) − 1) Sp (mod p)

4(= 22) x2 + 1 0 0

12(= 22 · 3) x4 − x2 + 1 0 0

18(= 2 · 32) x6 − x3 + 1 0 0

6(= 2 · 3) x2 − x+ 1 -1 -1

10(= 2 · 5) x4 − x3 + x2 − x+ 1 -1 -1

2 x+ 1 1 1

30(= 2 · 3 · 5) x8 + x7 − x5 − x4 − x3 + x+ 1 1 1

Table 3. Selected Φn(x) When n is Squarefree (lower half)

or Not (upper half), and n+ 1 is a Prime p.
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Theorem 3. If n =
∏r

i=1 p
αi

i , then c(n, φ(n) − 1) = 0 if at least one αi > 1,

and c(n, φ(n) − 1) = (−1)r−1 otherwise.

Proof. The theorem is trivially true for the first nonsquarefree integer (n = 4)

and for all squarefree integers n > 1 for which r = 1 (i.e., primes). Assume it also

holds for the first k nonsquarefree integers and the first k squarefree integers. Now,

on the one hand, let N =
∏s

i=1 p
αi

i be the (k+1)st nonsquarefree integer and define

m =
∏s

i=1 pi. We can write (using Property 3)

Φn(x) =
xN − 1

[
∏

d Φd(x)]
∏

D ΦD(x)
=

xN − 1

(xm − 1)[
∏

D ΦD(x)]
,

where the d’s are squarefree divisors ofN , 1 ≤ d < N , and theD’s are nonsquarefree

divisors of N , 1 < D < N . The induction hypothesis gives us immediately that the

term of next-to-highest degree is absent in the denominator, and so upon division

the term of degree φ(N)− 1 in ΦN (x) is also absent. The first half of the theorem

follows by mathematical induction.

On the other hand, if N is the (k+1)st squarefree integer, then there is no ex-

tended product overD’s. There are
(

k+1
m

)

factors Φd(x), m = 0, 1, 2, . . . k, for which

d is the product of m distinct primes. By the induction hypothesis the coefficient

of the term of degree φ(d)− 1 in each such Φd(x) is (−1)m−1. Multiplication of all

the Φd(x)’s with a common m and summation over all m gives for the coefficient

of the term of next-to-highest degree in
∏

d Φd(x) the value

k
∑

m=0

(−1)m−1

(

k + 1

m

)

= (−1)k+1.

Hence, upon division, the coefficient of the term of next-to-highest degree in

ΦN (x) =
xN − 1

∏

dΦd(x)

is (−1)k = (−1)(k+1)−1. The second half of the theorem also holds by mathematical

induction.
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We note that Theorem 3 does not depend on n + 1 being a prime. However,

Gauss’ Theorem now follows straight off if in Theorem 3 we do take n = p− 1 > 1

there.

Corollary. (Gauss) For any odd prime

Sp ≡

{

0 (mod p) if p− 1 is not squarefree

(−1)r (mod p) if p− 1 =
∏r

i=1 pi

It may be noted that the Corollary can be applied, with slight modification, to

any of the sets of integers having a common order d, d|(p− 1) (see Table 2) [5b,9].
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(1968), 46. (d) H. Möller, “Über die Koeffizienten des n-ten Kreisteilungspoly-
noms,” Mathematische Zeitschrift, 119 (1971), 33–40. (e) D. Zeitlin, “On Coef-
ficient Identities for Cyclotomic Polynomials Fpq(x),” American Mathematical
Monthly, 75 (1968), 976–980.

3. (a) C. F. Gauss, Disquisitiones Arithmeticae (trans. by A. A. Clarke), Yale
University Press, New Haven, 1966, 33–36. (b) ibid., 52–54.

4. L. J. Goldstein, Abstract Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1973,
226–227. See also reference 1f, p. 194.

5. (a) G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
5th ed., Oxford University Press, Oxford, 1979, 85–86. (b) ibid., 237–239. This
treatment considers Ramanujan sums.

6. L. Kronecker, Vorlesungen über Zahlentheorie, Vol. 1, B. G. Teubner, Leipzig,
1901, 375–388 (reprinted by Springer-Verlag, Berlin, 1978).

7. E. Lehmer, “On the Magnitude of the Coefficients of the Cyclotomic Polyno-
mial,” Bulletin of the American Mathematical Society, 42 (1936), 389–392.

8. I. Schur (1931, unpublished), as cited in Lehmer [vide supra].

9. M. A. Stern, “Bemerkungen über hohere Arithmetik,” Journal für Mathematik,
6 (1830), 147–153, as quoted in R. Moller, “Sums of Powers of Numbers Hav-
ing a Given Exponent Modulo a Prime,” American Mathematical Monthly, 59
(1952), 226–230.

10. See, for example, L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed.,
Springer-Verlag, New York, 1997, 12–13, where the author gives an accessible
proof (via cyclotomic polynomials) that for any n > 1 there are infinitely many
primes p ≡ 1 (mod n), a special case of Dirichlet’s theorem.

Joseph B. Dence
Department of Chemistry
University of Missouri - St. Louis
St. Louis, MO 63121


