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ON WEAKLY LPN RINGS
A. Y. M. Chin

Introduction. All rings in this paper are assumed to be associative with
identity. By an Artinian (Noetherian) ring, we mean a ring that is both left and
right Artinian (Noetherian). For any ring R, P(R) and J(R) will denote its prime
and Jacobson radicals, respectively. R is said to be a left perfect ring if R/J(R)
is Artinian and J(R) is left T-nilpotent. If R/J(R) is Artinian and idempotents
of R/J(R) can be lifted to R, we say that R is semiperfect. It is well-known that
all left perfect rings are semiperfect but not vice versa. In addition, it can be
shown (see Proposition 1.4) that if R is left perfect then the following conditions
are equivalent:

(i) R/P(R) is Artinian and P(R) is left T-nilpotent;
(ii) R/P(R) is Artinian and J(R) is left T-nilpotent.

In this paper we consider a class of rings which we shall call the class of weakly
left perfect Noetherian rings. We say that a ring R is weakly left perfect Noetherian
(weakly LPN for short) if R/P(R) is Noetherian and P(R) is left T-nilpotent. It
is clear that a Noetherian or left perfect ring is weakly LPN. The converse is not
necessarily true. For example the ring of integers Z is weakly LPN but not left
perfect (or semiperfect) since Z/J(Z) = Z is not Artinian. In fact, we shall show in
section one that the class of left perfect rings is strictly contained in the intersection
of the class of semiperfect rings and the class of weakly LPN rings. The rest of this
paper is concerned with necessary and sufficient conditions for a group ring to be
weakly LPN. In particular, we shall show that if R is weakly LPN and G is finite,
then RG is weakly LPN. We also show that the converse of this holds if R is a
division ring and G is a locally finite abelian group.

1. A Proposition and Some Examples. We first prove the equivalent
conditions stated in the introduction.

Lemma 1.1. Let I be an ideal of a ring R. If I is left T-nilpotent, then every
element of I is strongly nilpotent.

Proof. Suppose that there exists an element a € I such that a is not strongly
nilpotent. Then we have a sequence {zy,},>0 where

ro=aand x; € x; 1 Rx; 1, 1>1

such that x,, # 0 for every n > 0. Note that for each ¢ > 1, z; can be written in
the form

x; = (as1)(as2) -+ (asqi_1)a
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for some s; € R, j=1,...,2" — 1. Since x,, # 0 for every n > 1, so

(as1)(asz) - (asgn_1) #0

for every n > 1. Then since each as; € I and I is left T-nilpotent, we have a
contradiction. Therefore every element of I must be strongly nilpotent.
Lemma 1.2. For any ring R such that J(R) is left T-nilpotent, P(R) = J(R).

Proof. Clearly we only need to show that J(R) C P(R). But this follows easily
from the fact that every element of J(R) is strongly nilpotent (by Lemma 1.1) and
that P(R) consists of all strongly nilpotent elements of R.

Lemma 1.3. For any ring R such that R/P(R) is Artinian, J(R) = P(R).

Proof. Since R/P(R) is Artinian, so its prime and Jacobson radicals coincide.
Let m: R — R/P(R) be the canonical homomorphism. Then

m(J(R)) € J(R/P(R)) = P(R/P(R)) = {0}.

Therefore, J(R) C Ker # = P(R) and consequently, J(R) = P(R).
By Lemmas 1.2 and 1.3 the following result is immediate.
Proposition 1.4. The following conditions are equivalent for a ring R:

(i) R is left perfect;
(ii) R/P(R) is Artinian and P(R) is left T-nilpotent;
(iii) R/P(R) is Artinian and J(R) is left T-nilpotent.
We now show the existence of a semiperfect ring which is not weakly LPN.

Example 1.1. Let R = F[x1,22,...]/(22,23,...) be a factor ring of polynomi-
als where F is a field. Then R is a commutative local ring with P(R) = J(R) nil,
but not T-nilpotent. Hence, R is semiperfect but not weakly LPN.

For a non-commutative example of a semi-perfect ring which is not weakly
LPN, we have

Example 1.2. Let N be the set of positive integers, F a field and V a left
F-vector space with basis {zp}n>0. Set

n—1
Vi =40} and V,, = ZF,TZ', n > 2.
i=1

Let R consist of those f € Endr(V') such that for some scalar ay
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(i) dimpIm(f —asly) < oo;
(i) (f—arly)(zn) € Vo, neN

Let S ={f € R| ay = 0}. By routine verification, R is a subring of Endg(V')
and S is an ideal of R. Note that for n > 2, f(V;,) C V,,_1 for any f € S. It is
left as an exercise to the reader to show that S = J(R) and R/J(R) 2 F. R is
therefore a semiperfect ring. To show that R is not weakly LPN, let e,,: V — V,
n > 1 be the F-linear transformation defined as follows:

0 ifm<n
en(xm): m € N.

. )
r, ifm>n

It is straightforward to show that e,, (n > 1) is strongly nilpotent. Hence, e,, € P(R)
for n > 1. Note that if m > n, then

er- - en(Tm) =e1--en_1(xy)

=€ €n72(17n71)

=e1(r2) =11 # 0.

Therefore e - - - e, # 0 for any n > 1. It follows that P(R) is not left T-nilpotent;
hence, R is not weakly LPN.

We next give an example which shows that the class of left perfect rings is
strictly contained in the intersection of the class of semiperfect rings and the class
of weakly LPN rings.

Example 1.3. Let F be a field and R = F|[[z]], the formal power series ring in
x over F. Then R is local and hence, R/J(R) is a field. It follows that R/J(R) is
Artinian and the only idempotents of R/J(R) are 0+ J(R) and 1+ J(R). It is clear
then that R is semiperfect. Since R is a principal ideal domain so R is Noetherian.
Then since P(R) = {0} is left T-nilpotent and R/P(R) = R is Noetherian, so R is
weakly LPN. Note, however, that R is not left perfect since J(R) = (z) is not left
T-nilpotent.

2. Some Preliminary Results. In [4], Patterson defined an ideal I of a ring
R to be strongly left T-nilpotent if, given any sequence {S;};>1 of finite subsets of
I, there is an integer n, depending upon the sequence, such that x; -- -z, = 0 for
allx; € S;,i=1,... ,n.
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Proposition 2.1. (Patterson, [5]). An ideal I of a ring R is left T-nilpotent if
and only if it is strongly left T-nilpotent.

We obtain a useful application of this result in the following proposition. First
we recall that for any element r = ) T4g in a group ring RG, the support of r
is defined as

geG
Suppr={g€ G |ry#0}.

Proposition 2.2. Let R be a ring and G a group. If I is a left T-nilpotent ideal
of R, then IG is a left T-nilpotent ideal of RG.

Proof. Let {x;};>1 be a sequence of elements of IG. Then for each i,
Ti =040, + -+ Qi 3y D (5)
for some a;; € I, g;; € G (j = 1,... ,n(i)). Now for each i, let

Si = {ail, . ,ain(i)}.

We thus have a sequence {S;};>1 of finite subsets of I. Since I is strongly
left T-nilpotent (by Proposition 2.1), there exists a positive integer m such that
Sy -8y = {0}. Now suppose that Supp (z1 - - - Ty, ) # 0. Then there exists an ele-
ment g € Supp (z1 - - - ) and we note that the coefficient of g is a sum of elements
of the form by ---b,, where b; € S;, ¢ = 1,... ,m. Then since S; ---S,, = {0}, so
b1 - by, = 0. It follows that the coefficient of g is zero; a contradiction. Therefore,
Supp (21 -+ - ) = 0 and hence, 27 - - 2, = 0. It follows from this that IG is left
T-nilpotent.

Lemma 2.3. Let R be a ring such that R/P(R) is Noetherian. Then for any
homomorphic image S of R, S/P(S) is also Noetherian.

Proof. Let f be an epimorphism of R onto S and let m: R/P(R) — S/P(S) be
the mapping induced by f, that is,

7w(z+ P(R)) = f(z) + P(S), z= € R.

Since f(P(R)) C P(S), so  is well-defined. It is easily verified that 7 is a ring
epimorphism. Then since R/P(R) is Noetherian, so is S/P(S).

Proposition 2.4. Any homomorphic image of a weakly LPN ring is weakly
LPN.

Proof. Let R be a weakly LPN ring and f a ring epimorphism of R onto a ring
S. We wish to show that S is weakly LPN. By Lemma 2.3 we know that S/P(S)
is Noetherian. Thus it remains to show that P(S) is left T-nilpotent.

We first note that f(P(R)) is a left T-nilpotent ideal of S. Indeed, let
{51, $2,...} be a sequence of elements of f(P(R)). Then for each i = 1,2,...,
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s; = f(r;) for some r; € P(R). Since P(R) is left T-nilpotent, there exists a
positive integer n such that ry - --r, = 0. Therefore

Sl...sn:f(/rl...rn):o

and hence, f(P(R)) is left T-nilpotent.
Now define m: R/P(R) — S/ f(P(R)) as follows:

m:r+ P(R) — f(r) + f(P(R)), r € R.

By routine verification 7 is a well-defined ring epimorphism. Then since R/P(R)
is Noetherian, so is S/f(P(R)). Therefore, P(S/f(P(R))) is nilpotent; hence,
left T-nilpotent. Now since f(P(R)) C P(S), we have that P(S)/f(P(R)) =
P(S/f(P(R))). Therefore, P(S)/f(P(R)) is left T-nilpotent and since f(P(R)) is
also left T-nilpotent, so is P(.S).

Proposition 2.5. Let R be a ring and G a locally finite group. Then RG is
Noetherian if and only if R is Noetherian and G is finite.

Proof. This follows easily from [2] and the fact that a group G has the maximal
condition for subgroups if and only if G and all its subgroups are finitely generated.

3. Sufficient Conditions. We first obtain sufficient conditions for a group
ring to be weakly LPN.

Proposition 3.1. Let R be a ring and G a group. If R is weakly LPN and G is
finite, then RG is weakly LPN.

Proof. Since R is weakly LPN, so R/P(R) is Noetherian. Then since G is
finite, (R/P(R))G is Noetherian. Now let 7m: RG/P(R)G — RG/P(RG) be defined
as follows:

m(a+ P(R)G) = a+ P(RG), «a€ RG.

Since P(R)G C P(RG) (by [2]), so 7 is well-defined. It is easily verified that =
is a ring epimorphism. Then since RG/P(R)G = (R/P(R))G is Noetherian, so is
RG/P(RG).

Next we show that P(RG) is left T-nilpotent. Since P(R) is left T-nilpotent,
Proposition 2.2 tells us that P(R)G is also left T-nilpotent. Let §: RG —
RG/P(R)G canonically. Then

P(RG)/P(R)G = §(P(RG)) C P(RG/P(R)G). (3.1)
Since RG/P(R)G is Noetherian, so P(RG/P(R)G) is nilpotent; hence, left T-

nilpotent. It follows from (3.1) that P(RG)/P(R)G is left T-nilpotent. Then since
P(R)G is also left T-nilpotent, so is P(RG). Hence, RG is weakly LPN.
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Remark 3.1. We note that G finite is not a necessary condition for RG to be
weakly LPN. For example, if G is an infinite cyclic group then the integral group
ring ZG is Noetherian and hence, weakly LPN.

4. Necessary Conditions. We first recall some standard notation. Let R be
aring and H a subgroup of a group G. Then wH is the left ideal of RG generated by
{1—="h | h € H}. In particular, if H = G, then A = wG is called the augmentation
ideal of RG. We also recall that a nontrivial group G is said to be a prime group
if it has no finite normal subgroup other than the trivial subgroup {1}.

Proposition 4.1. (Connell, [2]). Let R be a ring and G a prime group. Then
RG is semiprime if and only if R is semiprime.

Lemma 4.2. Let R be a ring and G a prime group. Then P(RG) = P(R)G.

Proof. The inclusion P(R)G C P(RG) follows from [2]. For the reverse inclu-
sion, note that since G is prime and R/P(R) is semiprime, Proposition 4.1 tells us
that

P(RG/P(R)G) = P((R/P(R))G) = {0}.

As P(RG) is the smallest ideal K such that P(RG/K) = {0}, it follows that
P(RG) C P(R)G.

Our main result in this section is as follows.

Proposition 4.3. Let R be a ring and G a group. If RG is weakly LPN, then
R is weakly LPN and either G has the maximal condition for subgroups or G has
an infinite ascending chain of finite normal subgroups.

Proof. Since RG is weakly LPN and R = RG/A, it follows from Proposition
2.4 that R is weakly LPN. Without loss of generality we may assume that R is
semiprime; for R/P(R) is semiprime and (R/P(R))G = RG/P(R)G is weakly
LPN.

Now if P(RG) = {0}, then RG = RG/P(RQ@) is Noetherian. It follows that G
has the maximal condition for subgroups. If P(RG) # {0}, then since P(R) = {0},
it follows from Proposition 4.1 that G is not a prime group. Therefore, G contains
a finite normal subgroup Hy # {1}.

We next consider G; = G/H;. Since RGy = R(G/H;) = RG/wHj, it follows
from Proposition 2.4 that RG; is weakly LPN. Now if P(RG1) = {0}, then RG; =
RG1/P(RG) is Noetherian. Therefore, G; = G/H; has the maximal condition for
subgroups. As the finite subgroup H; also has the maximal condition for subgroups,
so does G. If P(RGy) # {0}, then since P(R) = {0}, it follows from Proposition
4.1 that G is not prime. Therefore G; = G/H; contains a finite normal subgroup
Hy/H, where Hs is a normal subgroup of G with Hy D H;.
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Now consider G2 = G/H, and repeat the same argument as in the preceding
paragraph. By continuing the same process, we see that we either have P(RG,,) =
{0} at some point n or P(RGy,) # {0} for any n. If P(RG,,) # {0} for any n, then
it is clear that we would have an infinite ascending chain

HiCHyC---

of finite normal subgroups of G. If P(RG,) = {0} for some n, then RG, =
RG,,/P(RG,) is Noetherian and therefore G,, has the maximal condition for sub-
groups. Then since G,, = G/H, and H, is finite (hence, H, has the maximal
condition for subgroups), so G also has the maximal condition for subgroups.

5. Some Related Results. We note that every division ring (also known as
skew field) is weakly LPN.

Proposition 5.1. Let R be a division ring with char R = 0 and let G be a
locally finite group. Then RG is weakly LPN if and only if G is finite.

Proof. The sufficiency follows immediately from Proposition 3.1. Now suppose
that RG is weakly LPN. Note that the order of every finite subgroup of G is a unit in
R since char R = 0. Then since G is locally finite and R is (von Neumann) regular,
it follows from [1] that RG is regular. Therefore P(RG) C J(RG) = {0}. Then
since RG = RG/P(RG) is Noetherian, it follows immediately from Proposition 2.5
that G is finite.

If we assume additionally that G is abelian, then the assertion in Proposition
5.1 also holds for any division ring of characteristic p > 0.

Proposition 5.2. Let R be a division ring with char R = p > 0 and let G be a
locally finite abelian group. Then RG is weakly LPN if and only if G is finite.

Proof. Because of Proposition 5.1 we may assume that p > 0. The sufficiency
follows immediately from Proposition 3.1.

Now suppose that RG is weakly LPN. We assume that G is infinite and derive
a contradiction. Since G is a locally finite (hence, torsion) abelian group, we may
write G = G, x H, where G, is the Sylow p-subgroup of G and the order of every
element of H is prime to p. Now since R is regular, H is locally finite and the
order of every finite subgroup of H is a unit in R, we have that RH is regular (by
[1]). Therefore P(RH) = {0}. Then since RH = R(G/G,) = RG/wG),, it follows
from Proposition 2.4 that RH is weakly LPN. Therefore, RH = RH/P(RH) is
Noetherian and hence, by Proposition 2.5, H is finite. As G is assumed to be
infinite, we must have that G, is infinite.

Let g € Gp, g # 1. Then g?" =1 for some positive integer n. We then have
that (1—g)?" = 0, that is, 1 —g is a nilpotent element of RG. As 1—g belongs to the
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center of RG, so 1— g is a strongly nilpotent element and therefore, 1 — g € P(RG).
Thus, we have shown that for any g € G,, 1 — g € P(RG).

Now construct a sequence {g;};>1 in G so that g1 # 1 and for n > 2, g,, does
not belong to the subgroup generated by {g1,...,gn—1}. Thus, for any n > 1, the
product [T, (1 — g;) is never zero since the term [, g; does not cancel. This
contradicts the left T-nilpotence of P(RG). Hence, G must be finite.

From Propositions 3.1 and 5.2 we have the following obvious corollary.

Corollary 5.3. Let R be a division ring with char R = p > 0 and let G be a
locally finite abelian group. Then RG is weakly LPN if and only if RH is weakly
LPN for every subgroup H of G.
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