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ALTERNATIVE APPROACHES TO PROOFS OF CONTRACTION

MAPPING FIXED POINT THEOREMS

James E. Joseph and Myung H. Kwack

While preparing a lecture on Banach’s Contraction Mapping Theorem for a

classroom presentation to a group of mathematics students in elementary real anal-

ysis, we discovered elegant alternative proofs of the theorem and some of its gen-

eralizations and variations. The approaches to these proofs are more in the nature

of ones which an undergraduate mathematics major might attempt while study-

ing complete metric spaces if asked to produce a proof of Banach’s theorem before

having seen the ingenious proof given by Banach.

In [1], Banach proved the celebrated Contraction Mapping Theorem.

(1) If (X, d) is a complete metric space and g:X → X is a function satisfying

d(g(x), g(y)) ≤ µd(x, y) for all x, y ∈ X and some fixed 0 < µ < 1, then g has a

unique fixed point.

Banach showed that for any v ∈ X , the sequence of iterates {gn(v)} is a Cauchy

sequence and is therefore convergent to some p ∈ X . By the continuity of g,

the subsequence {gn+1(v)} converges to g(p). Thus, g(p) = p. Most contraction

mapping type theorems have been established by variations on this technique (see

[4,5,6,7,8]).

In [2], Boyd and Wong gave an alternative approach to the proof of (1), using

Cantor’s intersection property. Their proof, while not the first to directly utilize

the Cantor theorem, was more direct than those previously given (see [7]). We now

present another alternative approach. Let I(g) = {d(x, g(x)) : x ∈ X}. We show

first that 0 = inf I(g) and then that 0 ∈ I(g).

Our Proof of (1). Let c = inf I(g). If c > 0 we have c/µ > c and an x ∈ X

satisfying

d(g(x), g(g(x))) ≤ µd(x, g(x)) < c,

a contradiction. Thus, c = 0. Let {xn} be a sequence in X with d(xn, g(xn)) → 0.

Then {xn} is a Cauchy sequence since

d(xn, xm) ≤ d(xn, g(xn)) + d(g(xn), g(xm)) + d(xm, g(xm))
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gives

(1− µ)d(xn, xm) ≤ d(xng(xn)) + d(xm, g(xm)).

Thus, there is a p ∈ X with xn → p, and g(xn) → p follows from the fact that

d(xn, g(xn)) → 0. It follows that d(g(xn), g(p)) ≤ µd(xn, p), so g(xn) → g(p) and

g(p) = p. The uniqueness of p follows as usual from the contractive nature of g.

Remark 1. One of the useful features of Banach’s proof of the theorem is that

d(gn(v), p) ≤
µn

1− µ
d(v, g(v)).

We see readily that this feature is captured by our method since for any v ∈ X , we

have by induction that

d(gn(v), p) = d(gn(v), gn(p)) ≤ µnd(v, p) ≤
µn

1− µ
d(v, g(v)).

As another application of this method, we present an alternative proof of the

following theorem due to Fisher [5].

(2) If g is a mapping of a complete metric space (X, d) into itself satisfying the

condition

d(g(x), g(y)) ≤ µ[d(x, g(y)) + d(y, g(x))]

for all x, y ∈ X and some 0 ≤ µ < 1/2, then g has a unique fixed point.

Our Proof of (2). Let c = inf I(g) and suppose 0 < µ. If c > 0 then ((1 −

µ)/µ)c > c since µ < 1/2; so there is an x ∈ X satisfying

d(g(x), g2(x)) ≤
µ

1− µ
d(x, g(x)) < c.

Hence, c = 0 and d(xn, g(xn)) → 0 for some sequence {xn} in X . Such a sequence

satisfies

d(xn, xm) ≤ d(xn, g(xn)) + d(g(xn), g(xm)) + d(g(xm), xm)

≤
1 + µ

1− 2µ
[d(xn, g(xn)) + d(xm, g(xm))].
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Hence, {xn} is a Cauchy sequence. Choose p ∈ X with xn → p. Then g(xn) → p

since d(xn, g(xn)) → 0. Since

d(g(xn), g(p)) ≤ µ[d(p, g(xn)) + d(xn, g(p))]

we obtain d(p, g(p)) ≤ µd(p, g(p)) and g(p) = p.

Remark 2. An analysis of the proof of (2) shows that any sequence {xn} in X

with d(xn, g(xn)) → 0 must converge to the fixed point. We observe that if v ∈ X

and xn = gn−1(v) it follows by induction that

d(xn, g(xn)) ≤

(

µ

1− µ

)n−1

d(v, g(v)),

so the sequence of iterates of any point converges to the fixed point.

Remark 3. If p is the fixed point assured in (2) and {xn} is any sequence in

X , then

d(xn, p)) ≤ d(xn, g(xn)) + d(g(xn), g(p))

≤
1 + µ

1− 2µ
d(xn, g(xn)).

Therefore, from Remark 2, if v ∈ X and xn = gn−1(v) it follows that

d(xn, p) ≤
1 + µ

1− 2µ

(

µ

1− µ

)n−1

d(v, g(v)),

which gives an estimate for the rate of convergence of the iterates of the point v to

the fixed point.

Remark 4. We observe that a consequence of (2) is that if (X, d) is a complete

metric space and g:X → X is a function satisfying d(g(x), g(y)) ≤ µd(x, y) for all
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x, y ∈ X and some fixed 0 < µ < 1/3, then g has a unique fixed point. This follows

from

d(g(x), g(y)) ≤ µ[d(x, g(y)) + d(g(x), g(y)) + d(y, g(x))]

≤
µ

1− µ
[d(x, g(y)) + d(y, g(x))],

and (µ/(1 − µ)) < 1/2.

Our next illustration of this method is a proof of a common generalization of

(1) and (2) which is due to Hardy and Rogers [6].

(3) Let (X, d) be a complete metric space and let g be a self mapping of X satisfying

the following condition for all x, y ∈ X and fixed nonnegative a, b, c, e, f with a +

b+ c+ e + f < 1:

d(g(x), g(y)) ≤ ad(x, g(x)) + bd(y, g(y)) + cd(x, g(y)) + ed(y, g(x)) + fd(x, y).

Then g has a unique fixed point p and, for each v ∈ X , gn(v) → p.

Our Proof of (3). Let q = inf I(g). By the lemma in [6] there is a µ < 1

satisfying

d(g(x), g2(x)) ≤ µd(x, g(x))

for all x ∈ X . Thus, q = 0. There is a sequence {xn} in X with d(xn, g(xn)) → 0.

We see that {xn} is a Cauchy sequence since

[1− (c+ e+ f)]d(xn, xm) ≤ (1 + a+ e)d(xn, g(xn)) + (1 + b+ c)d(xm, g(xm)).

Let p ∈ X satisfy xn → p. Then g(xn) → p and g(p) = p since

d(g(xn), g(p)) ≤ ad(xn, g(xn)) + bd(p, g(p)) + cd(xn, p)

+ cd(p, g(p)) + ed(xn, p) + ed(p, g(p)) + fd(xn, p),

which gives

d(p, g(p)) ≤ (b + c)d(p, g(p)).



VOLUME 11, NUMBER 3, FALL 1999 171

The uniqueness of p is readily established. It is seen from the argument above that

if {xn} is any sequence in X with d(xn, g(xn)) → 0, we have xn → p; since

d(gn(v), gn+1(v)) ≤ µnd(v, g(v))

for any v ∈ X , it follows that gn(v) → p. Also, we observe that if p is the fixed

point and d(xn, g(xn)) → 0, we have

[1− (c+ e+ f)]d(xn, p) ≤ (1 + a+ e)d(xn, g(xn)),

so

d(g(xn), p) ≤
1 + a+ e

1− (c+ e+ f)
d(gn(v), gn+1(v))

≤
1 + a+ e

1− (c+ e+ f)
µnd(v, g(v)).

This furnishes an estimate for the rate of convergence of the iterates of a point in

the space.

Remark 5. An alternative proof of a theorem of Edelstein [4] concerning con-

traction mappings on ǫ-chainable spaces may be obtained by a slight modification

of the method employed above.

For our final demonstration of alternative proofs we produce two proofs of the

following theorem on common fixed points, a result due to Kannan [7]. The first

uses the ideas employed above in the proofs of (1), (2), (3), and the second uses

the Cantor Intersection Property.

(4) If (X, d) is a complete metric space and g, h:X → X are functions satisfying

d(g(x), h(y)) ≤ µ[d(x, g(x)) + d(y, h(y))]

for all x, y ∈ X and some 0 < µ < 1/2, then g and h have a unique common fixed

point.

Our First Proof of (4). Let c = inf(I(g) ∪ I(h)). Then c = inf I(g) or c =

inf I(h). We exhaust the possibilities.
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Case 1. c = inf I(g). If c 6= 0 then ((1−µ)/µ)c > c and there is an x ∈ X such

that d(x, g(x)) < ((1 − µ)/µ)c. For such an x we have

d(g(x), h(g(x)) ≤
µ

1− µ
d(x, g(x)) < c,

a contradiction. Let {xn} be a sequence in X such that d(xn, g(xn)) → 0. Then

d(xn, h(xn)) ≤ d(xn, g(xn)) + d(g(xn), h(xn))

≤ (1 + µ)d(xn, g(xn)) + µd(xn, h(xn))

≤
1 + µ

1− µ
d(xn, g(xn)).

Hence, d(xn, h(xn)) → 0. We see that {xn} is a Cauchy sequence from the fact

that

d(xn, xm) ≤ (1 + µ)[d(xn, g(xn)) + d(xm, h(xm))].

Let xn → p. Then

(1− µ)d(g(p), p) ≤ (1 + µ)d(h(xn), xn) + d(xn, p),

so g(p) = p. To see that h(p) = p note that

(1− µ)d(h(p), p) ≤ (1 + µ)d(g(xn), xn) + d(xn, p).

Case 2. c = inf I(h). Entirely similar to Case 1.

To effect our second proof of (4) we utilize the following well-known notions

and properties of metric spaces (see [3]).

(a) In a metric space, the diameter of a nonempty subset A (sup{d(x, y) :

x, y ∈ A}) is the same as the diameter of the closure A. We denote the diameter

of A by δ(A).

(b) A metric space is complete if and only if ∩Fn is a singleton set for every

decreasing sequence {Fn} of nonempty closed subsets of the space with δ(Fn) → 0.

For convenience we adopt the following additional notations. If (X, d) is a

metric space and g : X → X is a function we will denote the graph of g in
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X ×X by G(g), and will denote by e the distance function induced on X ×X by

d (e((x, y), (u, v)) = d(x, u) + d(y, v)). With this metric, X ×X is complete when

X is complete.

Our Second Proof of (4). Let c = inf(I(g) ∪ I(h)). Then c ≥ 0, and if c > 0

then ((1 − µ)/µ)c > c since µ < 1/2. Hence, there is an x ∈ X satisfying either

(i) d(x, g(x)) < ((1 − µ)/µ)c > c

or

(ii) d(x, h(x)) < ((1− µ)/µ)c.

If x satisfies (i) then

d(g(x), h(g(x))) ≤
µ

1− µ
d(x, g(x)) < c.

If x satisfies (ii) then

d(h(x), g(h(x))) ≤
µ

1− µ
d(x, h(x)) < c.

Consequently, c 6= inf(I(g) ∪ I(h)). Hence, c = 0. For each positive integer n let

Fn = d−1([0, 1/n]) ∩ (G(g) ∪G(h)).

Then Fn 6= ∅ and Fn+1 ⊂ Fn. We will complete the proof by distinguishing two

cases.

Case 1. (x, g(x)), (y, h(y)) ∈ Fn. Then

e((x, g(x)), (y, h(y))) = d(x, y) + d(g(x), h(y))

≤ d(x, g(x)) + d(g(x), h(y)) + d(h(y), y) + d(g(x), h(y))

≤ d(x, g(x)) + 2µ[d(x, g(x)) + d(h(y), y)] + d(h(y), y)

≤ (1 + 2µ)[d(x, g(x)) + d(h(y), y)] ≤ (1 + 2µ)
2

n
.
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Case 2. (x, g(x)), (y, g(y)) ∈ Fn. Then (g(x), h(g(x)) ∈ Fn, so

e((x, g(x)), (y, g(y))) ≤ e((x, g(x)), (g(x), h(g(x))) + e((g(x), h(g(x)))), (y, g(y)))

≤ (1 + 2µ)
4

n

from Case 1. Hence, δ(Fn) = δ(Fn) → 0, and ∩Fn = {(x, y)}; d(x, y) ∈ [0, 1/n] for

each n so x = y. If (xk, g(xk)) → (x, x), then

d(g(xk), h(x)) ≤ µ[d(xk, g(xk)) + d(x, h(x))],

so

d(x, h(x)) ≤ µd(x, h(x))

and h(x) = x. Also

d(x, g(x)) = d(h(x), g(x)) ≤ µd(x, g(x))

and g(x) = x. A similar argument gives g(x) = h(x) = x if (xk, h(xk)) → (x, x).

We conclude with two exercises for the reader.

Exercise 1. Give a proof of Banach’s Contraction Mapping Theorem using the

Cantor Intersection Theorem.

Exercise 2. Give a proof of (2) using the Cantor Intersection Theorem.
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