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THE TOWER OF HANOI PROBLEM

AND MATHEMATICAL THINKING

Joseph Bennish

Too often students leave a course in mathematics with the impression that
mathematics can only be done in a statement-proof style, and that only especially
gifted people are capable of originating such work. They fail to appreciate that
conjecturing is an integral part of the mathematical process, and that this does
not necessarily require extraordinary talent. How can this false impression be al-
tered? One way is by allowing students to see that they themselves are able to
make conjectures on a substantial mathematical problem. Initial conjectures can
be modified or discarded if further checking shows them to be incorrect. Verifica-
tion of the conjecture involves its proof. By carrying out, either individually or in a
group, both parts of the mathematical process-conjecture and proof, students gain
a far better understanding of mathematical thinking. However, conjecturing is in
itself a valuable exercise, even if it is not combined with proving the conjecture.

In this paper the solution of a problem related to the Tower of Hanoi problem
is given. The proof only uses mathematical induction, so it is within the reach
of many students. In the Tower of Hanoi problem there are three poles and some
rings, no two the same size. Initially, the rings are placed on a single pole A. Neither
initially nor during play is a larger ring ever above a smaller ring. A move consists
of taking the top ring from one pole and placing it on another pole. The Tower of
Hanoi problem is then to find the least number of moves required to move all rings
from the “initial pole” A to the “terminal pole” C. The other pole B will be called
the “intermediate pole.”

A position will mean a permitted arrangement of the rings on the poles with

the poles labeled. The problem is the following: how can one tell whether a

particular position actually occurs during the transfer of rings that takes

place in the Tower of Hanoi problem? At this point the reader might try to
find the correct conjecture himself. The only approach appears to be the empirical
one, that is, examining the actual positions which occur. It is interesting to ask
how many cases students examine on the average before the correct conjecture is
found.

Two numbers have the same parity if they are either both even or both odd,
otherwise they have opposite parity. To state the conjecture concisely, let’s agree
that there are n rings and that they are numbered in increasing size from 1 to n, n
being the largest ring. Here then is the correct conjecture.

A position is attained during the transfer process if and only if the following two
conditions are satisfied:
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i) any two adjacent rings (on the same pole) have opposite parity; and
ii) a ring at the bottom of a pole has the same parity as n if it is either on A or

C, and it has opposite parity to n if it is on the intermediate pole B.

It should be expected that a preliminary conjecture will consist of only one
of the conditions above. Indeed, the author first made the preliminary conjecture
that a position occurs if and only if (i) holds.

In the Tower of Hanoi problem the largest ring n is moved only once. The
transfer process involves three stages: first, the smallest n− 1 rings are transferred
to the intermediate pole B, then ring n is moved from pole A to pole C, and, lastly,
the smallest n − 1 rings are transferred from pole B to pole C. The total number
of moves is 2n − 1, but this information is not actually needed. In the inductive
proofs below only the inductive step will be discussed. We leave to the reader the
verification of the case n = 1.

The necessity of ii) is easily proved by induction. It follows from the inductive
hypothesis that during the first stage of the transfer, the bottom ring on B (which
can be considered the terminal pole for the transfer of the n − 1 smallest rings)
has the same parity as n − 1 while the bottom ring on C has the opposite parity
to n − 1. During the third stage of the process the bottom ring on B (which can
now be considered the initial pole for the transfer of the n−1 rings) must still have
the same parity as n− 1, while the bottom ring on A must have parity opposite to
n− 1.

In proving the necessity of i), the inductive hypothesis implies that any two
adjacent rings, neither of which is n, must have opposite parity. Thus, it suffices
to check that any ring which lands on the largest ring n has parity opposite to n.
However, by ii), while ring n remains on pole A, the ring above it has the same
parity as n− 1 (since pole A is the initial pole for the transfer of the smallest n− 1
rings during the first stage). A similar argument holds for the case in which ring n

has already been transferred to C.
Next, it must be proved that conditions i) and ii) are sufficient, that is, any

position satisfying these conditions actually occurs. Consider a particular position
of n rings satisfying i) and ii). Ring n must either be on the initial pole A or the
terminal pole C. Consider for now the case that it is on the initial pole. Recall
that this occurs during the first stage of the transfer process, that is, when the
smallest n − 1 rings are being transferred from pole A to pole B. The idea of the
proof is this: consider the position of the n − 1 smallest rings obtained from the
particular position of the n rings by simply ignoring ring n, and show that this

position satisfies both conditions i) and ii). It will then follow from the inductive
hypothesis that this position of the n− 1 smallest rings actually occurs, keeping in
mind that for the transfer of the n− 1 rings pole A is the initial pole and pole B is
the terminal pole.
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The position of the smallest n − 1 rings clearly satisfies condition i) since the
position of the n rings satisfies i). Since the n rings satisfy i) and ring n is on pole
A the second largest ring on A must have parity opposite to n. Since ii) is satisfied,
the largest ring on C has the same parity as n, and the largest ring on B has parity
opposite to n. But this says that if ring n is ignored, the largest rings on A and
B have the same parity as n− 1, and the largest ring on C has parity opposite to
n − 1. That is, the position of the n − 1 smallest rings satisfies both i) and ii), if
A and B are the initial and terminal poles, respectively. But these poles are just
for the transfer during the first stage, so this position must occur by the inductive
hypothesis! The argument for the case in which ring n is on pole C is similar.

There are other interesting questions connected to the Tower of Hanoi problem.
For instance, given a position which is attained during play, what is an efficient
method to decide what the next move should be? Another interesting problem,
posed and solved by my colleague Kent Merryfield, is the determination of the
number of distinct arrangements on a particular pole occurring during play in which
there are n rings altogether. The empty pole is included in this count. This number
will be the same for the terminal and initial poles, and the number of arrangements
on the intermediate pole for n rings equals the number of arrangements on the initial
(or terminal) pole for n − 1. In fact, the value σn of the number of arrangements
of n rings on the initial pole satisfies the Fibonacci recursion formula

σn+2 = σn+1 + σn

with initial values σ1 = 2 and σ2 = 3. This can be proved by using the characteri-
zation of the positions given above.

The author wishes to acknowledge his friend David Kantor for bringing this
problem to his attention (over twenty years ago!).

Editorial Note: The interested reader might like to refer to “Pascal’s Triangle
and the Tower of Hanoi,” by Andreas M. Hinz (American Mathematical Monthly,
June–July 1992, pp. 538–544) for another treatment of the above topic.
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