
VOLUME 11, NUMBER 3, FALL 1999 143

A VECTOR-JUMP HEURISTIC FOR KARMARKAR’S

LINEAR PROGRAMMING ALGORITHM

Teresa Baile DeWitt and L. Vincent Edmondson

1. Introduction. A significant amount of research has been done since 1984

in the area of interior-point algorithms for linear programming (LP). Some of these

algorithms have rivaled the simplex method for LP. This paper presents a variant

of Narendra Karmarkar’s interior-point algorithm [1] for solving LP problems. The

goal was to improve the efficiency of the algorithm by keeping track of the direction

vectors in successive iterations and then heuristically exploiting this information

to jump beyond the current iterate. A detailed description of this heuristic and

experimental results are included.

2. Linear Programming. The general linear programming problem can be

expressed by the following model.

Minimize

z = c1x1 + c2x2 + · · ·+ cnxn

subject to the constraints

a11x1 + a12x2+ · · ·+ a1nxn ≤ b1

a21x1 + a22x2+ · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2+ · · ·+ amnxn ≤ bn

and

x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0.

The variables x1, x2, · · ·xn are the decision variables while aij , bi, and cj are

the parameters of the model. The function z is the objective function which is

minimized or maximized depending on the problem.

In Karmarkar’s algorithm, a restricted form of the above problem is required

and is expressed in matrix notation.

144 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Minimize ~cT ~x

subject to A~x = ~0

~eT~x = 1.

The matrix and vectors are defined as:

~c is the vector consisting of the coefficients of the objective function.

A is the matrix consisting of the coefficients of the functional constraints.

~e is a vector of n 1’s.

Another matrix that is used in the algorithm is D. D is a diagonal matrix with

the current ~x iterate forming the diagonal. Karmarkar’s restricted form requires

that the minimum value of the objective function be zero.

Karmarkar’s method for solving LP problems starts at the center point of the

feasible region. After a transformation step, the objective function is projected onto

the null space of the matrix of constraints, yielding a direction and steplength. Af-

ter this step has been taken, the point is transformed back onto the original simplex

and becomes the new ~x iterate. A feasibility test is applied and the objective func-

tion value is computed and tested for optimality. This process moves the solution

towards the boundary where the optimal solution must be. The iterative portion

of the algorithm stops when the value of the objective function is acceptably close

to zero. The final step is to move the current ~x iterate to the nearest vertex of the

feasible region.

The technical description of Karmarkar’s algorithm follows:

Step 0: Let ~x(k) = (1/n, 1/n, . . . , 1/n) and k = 0. This sets the first iterate

equal to the center of the simplex.

Step 1: Define a matrix B as

B =

(

AD

~eT

)

,

which is a matrix of functional constraints.

VOLUME 11, NUMBER 3, FALL 1999 145

Step 2: Orthogonally project the objective vector D~c onto the null space of B,

yielding ~cp,

~cp = [I −BT (BBT)−1B]D~c.

Step 3: Define r to be the radius of the largest sphere you can inscribe in the

unit simplex:

r =
1

√

n(n− 1)
.

Normalize ~cp and obtain the scaled direction vector ~p:

~p =

√

~cp
|~cp|

.

Step 4: Take a steplength α(0 < α < 1) from the center of the simplex in the

−~p direction and that will give the new ~x′:

~x′ = ~e/n− αr~p where ~e/n = ~a0.

(Since we are minimizing the function we go in the −~p direction. Karmarkar

suggests α = 0.25).

Step 5: Do the inverse transformation to get back to the ~x iterate

~x(k+1) =
D~x′

~eTD~x′
.

This gets us back to the original simplex.

Step 6: Test for infeasibility using the following potential function,

f(~x) =

n
∑

i=1

ln

(

~cT~x

xi

)

.

146 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

If f(~x(k)) − f(~x(k+1)) < δ, then stop because the problem is infeasible or

unbounded. (δ is a function of α such that δ = α− α2

2 − α2

1−α
).

Step 7: Check for optimality. If ~cT~x(k+1) < ǫ then we purify ~x and stop. If

~cT~x(k+1) ≥ ǫ then k = k+1 and go back to Step 1. (To purify ~x means to move

to the nearest boundary point that does not worsen the objective function.)

3. Scalar Multiplier Modification. Step 2 of Karmarkar’s algorithm, the

projective transformation step, is the most complicated and time consuming step of

the algorithm. Consequently, this is where attention was focused when researching

a modification to Karmarkar’s method. The modification made is to choose a

scalar multiplier that would be applied in Step 5 after m iterations. This scalar

would be greater than 1 and would effectively increase the current ~x iterate an

increment beyond where it was. Then the algorithm would proceed as normal until

m iterations had occurred again and the modification would again be invoked.

It is interesting to note how the scalar multiplier uses the history of past

iterations. The current ~x iterate can be considered as the sum of all the vectors

used to obtain the previous ~x iterates. The multiplier in effect takes what is a

developing directional pattern and moves the current ~x iterate a fraction beyond

where it would have been. This additional step is in the direction dictated by the

vectors that were found in the earlier iterations.

One consequence of the scalar multiplier modification is the possibility of step-

ping outside the boundary of the feasible region. To account for that possibility

Karmarkar’s restricted form is exploited. The restricted form forces the minimum

objective function value to be zero. If the scalar multiplier modification results in a

negative value for the objective function, then the scalar multiplier is permanently

set back to 1.0, thereby returning to Karmarkar’s original algorithm.

The modification to Karmarkar’s method changes the algorithm in the follow-

ing manner:

Step 0 sets the first ~x iterate equal to the center of the simplex.

Step 1 defines the matrix B.

Step 2 orthogonally projects the vector onto the null space of B.

Step 3 defines the radius of the largest sphere that can be inscribed in the

simplex. The scaled direction vector is calculated in this step also.

Step 4 is where the step is taken from the center of the null space and the new

~x′ vector is found.

VOLUME 11, NUMBER 3, FALL 1999 147

Step 5 transforms the ~x′ vector back to the original space to obtain the new

~x iterate. This is where the scalar multiplier is applied creating a different ~x

iterate.

Step 6 tests for infeasibility.

Step 7 tests for optimality.

4. Experimental Results. There were five sample problems used to test the

scalar multiplier modification. They are:

Problem A: Minimize 2x1 + x2 − 2x3

subject to x1 − x3 = 0.

Problem B: Minimize x1 + x2 − x3

subject to x2 − x3 = 0.

Problem C: Minimize 3x1 + 3x2 − x3

subject to 2x1 − 3x2 + x3 = 0.

Problem D: Minimize x1 + 2x2 − x3

subject to x1 − x3 = 0.

Problem E: Minimize x1 − x2 + 6x3

subject to x1 − x2 = 0.

The above problems all had the additional constraint: x1 + x2 + x3 = 1.

To illustrate the effects of the Scalar Multiplier method, the following table

shows the results of the first five iterates and also the tenth iterate for Problem C

using Karmarkar’s original algorithm and the modified algorithm with the scalar

= 1.01 and m = 2.

148 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Iteration Karmarkar Scalar Multiplier
x1 = 0.270339 x1 = 0.270339

1 x2 = 0.317585 x2 = 0.317585
x3 = 0.412076 x3 = 0.412076
obj val = 1.351696 obj val = 1.351696
x1 = 0.208148 x1 = 0.207526

2 x2 = 0.302037 x2 = 0.301881
x3 = 0.489815 x3 = 0.490593
obj val = 1.040740 obj val= 1.037630
x1 = 0.152697 x1 = 0.150989

3 x2 = 0.288174 x2 = 0.287747
x3 = 0.559129 x3 = 0.561264
obj val = 0.763483 obj val = 0.754945
x1 = 0.107860 x1 = 0.104903

4 x2 = 0.276965 x2 = 0.276226
x3 = 0.615175 x3 = 0.618871
obj val = 0.539300 obj val = 0.524517
x1 = 0.074308 x1 = 0.070186

5 x2 = 0.268577 x2 = 0.267546
x3 = 0.657115 x3 = 0.662268
obj val = 0.371540 obj val = 0.350929
x1 = 0.010184 x1 = 0.002891

10 x2 = 0.252546 x2 = 0.250723
x3 = 0.737271 x3 = 0.746386
obj val = 0.050918 obj val = 0.014456

Initially, all of the test problems were solved using Karmarkar’s original al-

gorithm. The stopping criterion was a value less than 0.0000001 for the objective

function. This gave the number of iterations Karmarkar’s algorithm would take to

solve the problems.

The problems were then solved using the Scalar Multiplier modification. Based

on the number of iterations Karmarkar’s algorithm used, m, the number of itera-

tions between the implementations of the scalar multiplier, was chosen to be 2, 4,

or 8. The scalar multiplier values tried were 1.001, 1.01, 1.10, 1.25, and 1.50. The

results of the program runs are exhibited in Tables A, B, and C.

All the tables display the number of iterations needed to reach the solution

at each scalar multiplier and for Karmarkar’s algorithm. They also display the

number of iterations, k, that occurred before the objective function value became

VOLUME 11, NUMBER 3, FALL 1999 149

negative and the scalar multiplier defaulted back to the value of 1. Table A is for

m = 2, Table B is for m = 4, and Table C is for m = 8.

TABLE A — For m = 2

Scalar SM=1 after Problem Problem Problem Problem Problem
Multiplier (SM) k iterations A B C D E

1.001 k = 17 27 27 35 27 27

1.01 k = 11 32 33 37 33 33
1.1 k = 6 32 34 35 34 34
1.25 k = 5 31 31 34 31 31
1.50 k = 4 33 33 35 33 33

Karmarkar’s
Original 34 36 38 37 37

TABLE B — For m = 4

Scalar SM=1 after Problem Problem Problem Problem Problem
Multiplier (SM) k iterations A B C D E

1.001 k = 19 34 35 36 35 35
1.01 k = 13 34 35 37 35 35
1.10 k = 10 26 26 32 30 26

1.25 k = 7 35 35 36 35 35
1.50 k = 7 30 30 34 31 31

Karmarkar’s
Original 34 36 38 37 37

150 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

TABLE C — For m = 8

Scalar SM=1 after Problem Problem Problem Problem Problem
Multiplier (SM) k iterations A B C D E

1.001 k = 22 35 36 31 36 36

1.01 k = 15 35 36 37 36 36

1.1 k = 8 35 37 37 37 37
1.25 k = 8 35 37 37 37 37
1.50 k = 8 35 37 37 37 37

Karmarkar’s
Original 34 36 38 37 37

The results obtained from running the modified program are a fairly strong

indicator that the Scalar Multiplier modification has promise as an effective variant

of Karmarkar’s interior-point algorithm. With the exception of Problems A and B

at m = 8 and one incidence of Problem A at m = 4, all other problems at every

different combination of m and SM showed at the worst case an equal number of

iterations as Karmarkar and in most cases, an improvement over Karmarkar. The

improved cases ranged from a 3% improvement to a 30% improvement with 11 of

the 15 possible test scenarios showing a double digit percentage of improvement.

Also, the exceptions to equaling or improving Karmarkar are all just one iteration

more in every case. Therefore, any decrease in efficiency was a very small decrease.

There are other results of the research that stand out as being significant.

First of all, the patterns of improvement are very interesting. In Table A for

instance, four out of five most improved cases occur when SM = 1.001. In Table

B, an even stronger pattern is evident with all five most improved cases occurring

when SM = 1.10. Even in Table C, which exhibits the weakest evidence for the

modification, four of the five most improved cases occur when SM = 1.001.

Delving deeper into the patterns, also note that when m = 2, (the smallest

value ofm), the smallest value of SM gave the best results. When m = 4, the inter-

mediate value for m, SM = 1.10, an intermediate value for SM also gave the best

results. It appears that the Scalar Multiplier method is most effective when used

often (m = 2) and with a scalar multiplier close to 1.0. Given that Karmarkar’s

original algorithm does not guarantee a decrease in the objective function at ev-

ery iteration, it does appear reasonable that a smaller scalar multiplier would be

VOLUME 11, NUMBER 3, FALL 1999 151

best. Whenever the objective function increases, Karmarkar’s algorithm effectively

“backs up” towards the center of the feasible region before proceeding. A larger

value for the scalar multiplier would likely increase the probability of this occur-

rence. Consequently, smaller steps taken more often appear to be a good starting

point for setting the parameters of the modified algorithm.

5. Future Research. The research presented here indicates that the Scalar

Multiplier modification can affect improvement over Karmarkar’s interior-point al-

gorithm. The results lead to open questions for future research. First, will this

method scale up and be as effective on larger problems? Second, would the method

work better if, instead of resetting the scalar multiplier to 1.0 whenever the ob-

jective function value becomes negative, the method is employed throughout the

entire problem? Finally, would dynamically changing the scalar multiplier and/or

m (perhaps as a function of the number of iterations) yield better results than

leaving them as static values?

Reference

1. N. Karmarkar, “A New Polynomial-time Algorithm for Linear Programming,”
Combinatorica 4 (1984), 373–395.

Teresa Baile DeWitt
Versailles High School
309 S. Monroe
Versailles, MO 65084

L. Vincent Edmondson
Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO 64093-5045
email: vincee@cmsuvmb.cmsu.edu

