BLACKHOLE ANALYSIS

David Choate

Abstract

Let $S=\{z=x+y j \mid x$ and y real,$-\pi<y \leq \pi\}$ or equivalently, after an appropriate adjustment of the residue of y modulo $2 \pi, S=\{z=x+y$ $(\bmod 2 \pi) j \mid x$ and y real $\}$, a horizontal strip. Let $S_{B}=S U\{-\infty\}$. Also, let $z=x_{1}+y_{1} j$ and $w=x_{2}+y_{2} j \in S_{B}$. Define an operation \oplus, called blackholemultiplication on S_{B} as $$
z \oplus w=\left(x_{1}+x_{2}\right)+\left[\left(y_{1}+y_{2}\right) \quad \bmod (2 \pi)\right] j
$$

if both z and w are in S; otherwise $z \oplus w=-\infty$.
Now define $z \otimes w=\log \left(e^{z}+e^{w}\right)$. Let C be the complex field. Then $(C,+, \cdot) \cong$ $\left(S_{B}, \otimes, \oplus\right)$, a parallel universe where some defiant differential equations are taught humility.

Blackhole signal processing yields a new superposition.
And there exists a blackhole meta-algorithm which accelerates any program in which multiplication and exponentiation dominate addition and subtraction.

1. Blackhole Addition. Let $S=\{z=x+y j \mid x$ and y real, $-\pi<y \leq \pi\}$ or equivalently, after an appropriate adjustment of the residue of y modulo 2π, $S=\{z=x+y(\bmod 2 \pi) j \mid x$ and y real $\}$, a horizontal strip. Let $S_{B}=S U\{-\infty\}$.

Now let $z=x_{1}+y_{1} j$ and $w=x_{2}+y_{2} j \in S_{B}$. Define a blackhole or B multiplication on S_{B} as

$$
z \oplus w=\left(x_{1}+x_{2}\right)+\left[\left(y_{1}+y_{2}\right) \quad \bmod (2 \pi)\right] j
$$

provided both z and w are in S; otherwise, $z \oplus w=-\infty$.
And if $z=r e^{j \theta}$, then as usual define $\log (z)=\ln |r|+[\theta(\bmod 2 \pi)] j$ again after the appropriate adjustment of the residue. Clearly

$$
\log (z w)=\log (z) \oplus \log (w)
$$

Now let $z, w \in S_{B}$. We define an operation called blackhole addition or B addition on S_{B}, denoted by \otimes, as

$$
z \otimes w=\log \left(e^{z}+e^{w}\right)
$$

If we define $z \otimes-\infty=z=z \otimes-\infty$ for every z in S_{B}, then \otimes is an operation on S_{B}.

And clearly

$$
\log (z+w)=\log (z) \otimes \log (w)
$$

2. The Field ($\mathbf{S}_{\mathbf{B}}, \oplus, \otimes$). It is an easy exercise to show that $\left(S_{B}, \oplus, \otimes\right)$ is a field. But for the purpose of illustration observe that the B-additive identity is $-\infty$ since

$$
z \otimes-\infty=\log \left(e^{z}+e^{-\infty}\right)=z
$$

Also observe that if $z \in S$, then its B-additive inverse is $\pi j \oplus z$ since

$$
z \otimes(j \pi \oplus z)=\log \left(e^{z}+e^{j \pi \oplus z}\right)=\log \left[e^{z}\left(1+e^{j \pi}\right)\right]=\log (0)=-\infty
$$

And certainly the B-additive inverse of $-\infty$ is $-\infty$. Therefore every element in S_{B} has a B-additive inverse. Furthermore, B-division, denoted by \ominus, may be defined as

$$
z \ominus w=z \oplus(j \pi \oplus w)
$$

Furthermore, the distributive law of B-multiplication over B-addition can be established with the following calculation. For $u, v, w \in S_{B}$,

$$
\begin{aligned}
u \oplus(v \otimes w) & =\log \left(e^{u}\right) \oplus \log \left(e^{v}+e^{w}\right)=\log \left[e^{u}\left(e^{v}+e^{w}\right)\right] \\
& =\log \left(e^{u+v}+e^{u+w}\right)=\log \left(e^{u \oplus v}+e^{u \oplus w}\right) \\
& =(u \oplus v) \otimes(u \oplus w)
\end{aligned}
$$

Theorem 2.1. $(C, \cdot,+) \cong\left(S_{B}, \oplus, \otimes\right)$.
Proof. Define $\phi: C \rightarrow S_{B}$ by $\phi(z)=\log (z)$. Then

$$
\phi\left(z_{1} z_{2}\right)=\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right) \oplus \log \left(z_{2}\right)=\phi\left(z_{1}\right) \oplus \phi\left(z_{2}\right)
$$

Furthermore,

$$
\phi\left(z_{1}+z_{2}\right)=\log \left(z_{1}+z_{2}\right)=\log \left(z_{1}\right) \otimes \log \left(z_{2}\right)=\phi\left(z_{1}\right) \otimes \phi\left(z_{2}\right)
$$

If $w \in S$, then its preimage under $\phi, w \in S$, is e^{w}. And since the preimage of $-\infty$ is $0, \phi$ is onto.

If $\phi(z)=0 \otimes$, then $\log (z)=-\infty$, or $z=0$; so ϕ is one-to-one.

3. Blackhole Calculus.

Definition 3.1. The function f is said to be B-differentiable at x if the limit

$$
\lim _{h \rightarrow-\infty}\{[f(x \otimes h) \otimes(j \pi \oplus f(x))] \ominus h\},
$$

denoted by $(f)_{B}^{\prime}(x)$, exists.
Theorem 3.2. Suppose f is differentiable. Then f is B-differentiable and

$$
(f)_{B}^{\prime}(x)=[\log (d y / d x)] \oplus y \ominus x .
$$

Proof. By the definition and l'Hopital's Rule,

$$
\begin{aligned}
(f)_{B}^{\prime}(x) & =\lim _{h \rightarrow-\infty}\left\langle\left\{f\left[\log \left(e^{x}+e^{h}\right)\right] \otimes[j \pi \oplus f(x)]\right\} \ominus h\right\rangle \\
& =\log \left[\lim _{h \rightarrow-\infty}\left(\left\langle\exp \left\{f\left[\log \left(e^{x}+e^{h}\right)\right]\right\}-\exp (f(x))\right\rangle / e^{h}\right)\right] \\
& =\log \left(\lim _{h \rightarrow-\infty}\left\{f^{\prime}\left[\log \left(e^{x}+e^{h}\right)\right] \exp \left\{f\left[\log \left(e^{x}+e^{h}\right)\right]\right\} /\left(e^{x}+e^{h}\right)\right\}\right) \\
& =\log \left[f^{\prime}(x) e^{f(x) \ominus x}\right]=\left\{\log \left[f^{\prime}(x)\right]\right\} \oplus f(x) \ominus x
\end{aligned}
$$

Corollary 3.3. Let c and p be constants. Then
i. $(c)_{B}^{\prime}=-\infty$.
ii. $(p x)_{B}^{\prime}(x)=\log (p) \oplus(p \ominus 1) x$.
iii. $[\log (x)]_{B}^{\prime}=\ominus x$.
iv. $\left(e^{x} \oplus c\right)_{B}^{\prime}=e^{x}$.
v. $[\log (p x)]_{B}^{\prime}=\log (p) \ominus x$.
vi. $[p \log (x)]_{B}^{\prime}=\ominus x \oplus \log \left(p x^{p-1}\right)$.
vii. $\left(x^{p}\right)_{B}^{\prime}=x^{p} \ominus x \oplus \log \left(p x^{p-1}\right)$.
viii. $(\sin x)_{B}^{\prime}=\log (\cos x) \oplus \sin x \ominus x$.
ix. $(\cos x)_{B}^{\prime}=\log (\ominus \sin x) \oplus \cos x \ominus x$.
x. $(f)_{B}^{\prime \prime}(x)=\log \left\{f^{\prime \prime}(x)+\left[f^{\prime}(x)\right]^{2}-f^{\prime}(x)\right\} \oplus f(x) \ominus 2 x$.

Corollary 3.4. Let $f(x)$ be a real valued function in some interval I. Then $f(x)$ is increasing or decreasing in I if and only if $(f)_{B}^{\prime}$ is real or purely imaginary in I.

Theorem 3.4.5. Let $f(x)$ be differentiable. Then $\left(f_{B}\right)_{B}^{\prime}=\left(f^{\prime}\right)_{B}$.
Proof. By definition, $f_{B}(x)=\log \left[f\left(e^{x}\right)\right]$. Then,

$$
\left[f_{B}(x)\right]_{B}^{\prime}=\log \left[e^{x} f^{\prime}\left(e^{x}\right) / f\left(e^{x}\right)\right] \oplus \log \left[f\left(e^{x}\right)\right] \ominus x=x \oplus \log \left[f^{\prime}\left(e^{x}\right)\right] \ominus x=\left[f^{\prime}(x)\right]_{B} .
$$

The isomorphism in Theorem 2.1 is a portal into a parallel universe where we find the following.

Theorem 3.5. Suppose f and g are B-differentiable. Then
i. $(c \oplus f)_{B}^{\prime}(x)=[c \oplus(f)]_{B}^{\prime}(x)$.
ii. $(f \otimes g)_{B}^{\prime}=(f)_{B}^{\prime} \otimes(g)_{B}^{\prime}$.
iii. $(f \oplus g)_{B}^{\prime}=\left[f \oplus(g)_{B}^{\prime}\right] \otimes\left[g \oplus(f)_{B}^{\prime}\right]$.

To illustrate 3.5 (iii) consider the following.
Example 3.6. Let $f(x)=p x$ and $g(x)=q x$. Then

$$
\begin{aligned}
{\left[f \oplus(g)_{B}^{\prime}\right] \otimes\left[g \oplus(f)_{B}^{\prime}\right] } & =\{p x \oplus[(\log q \oplus(q \ominus 1) x]\} \otimes\{q x \oplus[\log p \oplus(p \ominus 1) x]\} \\
& =\log \left\{q e^{[p x+(q-1) x]}+p e^{[q x+(p-1) x]}\right\} \\
& =\log \left\{q e^{[p x \oplus(q \ominus 1) x]}+p e^{[q x \oplus(p \ominus 1) x]}\right\} \\
& =\log (p \oplus q) \oplus[(p \oplus q) \ominus 1] x \\
& =(f \oplus g)_{B}^{\prime} .
\end{aligned}
$$

Definition 3.7. Let

$$
\otimes \sum_{i=1}^{n} a_{i}=a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}
$$

The blackhole definite integral from a to b is given by

$$
\lim _{(\triangle x)_{B} \rightarrow-\infty}\left\langle\otimes \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)\right)_{B} \oplus(\triangle x)_{B}\right]\right\rangle
$$

where $(\triangle x)_{B}=[b \otimes(j \pi \oplus a)] \ominus n$ and x_{i} is in the i th subinterval. For this limit we use the notation

$$
\otimes \int_{a}^{b}\left[(f(x)]_{B} \oplus(d x)_{B}\right]
$$

Theorem 3.8.

$$
\otimes \int_{a}^{b}[f(x)]_{B} \oplus\left[(d x)_{B}\right]=\log \left[\int_{a}^{b} e^{[f(x)]_{B}+x} d x\right]
$$

Proof.

$$
\begin{aligned}
& \otimes \int_{a}^{b}[f(x)]_{B} \oplus\left[(d x)_{B}\right]=\otimes \int_{a}^{b}\left[f(x)_{B^{a}} \oplus(d x)_{B}\right] \\
& =\lim _{(\Delta x)_{B} \rightarrow-\infty} \log \left[\left(e^{f\left(x_{1}\right)}\right)\left(e^{x_{1}}-e^{x_{0}}\right)+\cdots+\left(e^{f\left(x_{n}\right)}\right)\left(e^{x_{n}}-e^{x_{n+1}}\right)\right] \\
& =\lim _{(\triangle x)_{B} \rightarrow-\infty} \log \left[e^{f\left(x_{1}\right)+x_{1}}+\cdots+e^{f\left(x_{n}\right)+x_{n}}+e^{f\left(x_{1}\right)+x_{0}}+\cdots+e^{f\left(x_{n}\right)+x_{n-1}}\right] .
\end{aligned}
$$

Set $x_{0}=a$. Without loss of generality we may assume that $(\triangle x)_{B}=x_{i} \otimes(j \pi \oplus$ $\left.x_{i-1}\right)=\log \left[\exp \left(x_{i}\right)-\exp \left(x_{i-1}\right)\right]$. Set $\Delta x=(b-a) / n$. After multiplying the last n terms of the argument by $e^{\triangle x} / e^{\triangle x}$ and all terms by $\triangle x / \triangle x$ we have by l'Hopital's Rule that

$$
\begin{aligned}
& \int_{a}^{b}\left[(f(x))_{B} \oplus(d x)_{B}\right] \\
=\log \left[\lim _{(\triangle x)_{B} \rightarrow-\infty} \frac{\left(e^{\triangle x}-1\right)}{\left(\triangle x e^{\triangle x}\right)}\right] & \oplus \log \int_{a}^{b}\left[e^{f(x)+x} d x\right]=\log \int_{a}^{b} e^{f(x)+x} d x \\
& =\log \left[\int_{a}^{b} e^{f(x)+x} d x\right]
\end{aligned}
$$

In order to get a feel for indefinite blackhole integrals consider the following.
Example 3.9. Recall that $(\log x)_{B}^{\prime}=\ominus x$.

$$
\otimes \int\left[(\ominus x)_{B} \oplus(d x)_{B}\right]=\log \left[\int e^{0} d x\right]=\log \left\{x+e^{c}\right\}=(\log x) \otimes(c)
$$

Example 3.10. Recall that $(p x)_{B}^{\prime}=\log (p) \oplus(p \ominus 1) x$.
$\left.\otimes \int[\log (p) \oplus(p \ominus 1) x] \oplus(d x)_{B}\right]=\log \left(\int p e^{p x} d x\right)=\log \left(e^{p x}+e^{c}\right)=(p x) \otimes(c)$.

Example 3.11. Recall that $\left(e^{x}\right)_{B}^{\prime}=e^{x}$.
$\otimes \int\left[e^{x} \oplus(d x)_{B}\right]=\log \left\{\int\left[\exp \left(e^{x}+x\right)\right] d x\right\}=\log \left[\exp \left(e^{x}\right)+e^{c}\right]=\left(e^{x}\right) \otimes(c)$.

Note 3.12. These examples indicate that

$$
\otimes \int\left[(f(x))_{*} \oplus(d x)_{*}\right]=\left[F_{*}(x) \otimes c\right]
$$

where $F_{*}(x)$ is the B-antiderivative of $f(x)$.
Other blackhole theorems are also immediate from Theorem 2.1.
Theorem 3.13.

$$
\begin{equation*}
\otimes \int_{a}^{a}\left[(f(x))_{B}+(d x)_{B}\right]=-\infty \tag{i}
\end{equation*}
$$

(ii)
$\left\langle\otimes \int_{a}^{b}\left[(f(x))_{B} \oplus(d x)_{B}\right]\right\rangle \otimes\left\langle\otimes \int_{b}^{c}\left[(f(x))_{B} \oplus(d x)_{B}\right]\right\rangle=\left\langle\otimes \int_{a}^{c}\left[(f(x))_{B} \oplus(d x)_{B}\right]\right\rangle$.

And clearly the blackhole version of the First Fundamental Theorem of Calculus is given by

$$
\begin{equation*}
\otimes \int_{a}^{b}\left[(f(x))_{B} \oplus(d x)_{B}\right]=\left[F_{B}(b)\right] \otimes\left[(j \pi) \oplus F_{B}(a)\right] \tag{iii}
\end{equation*}
$$

To illustrate Theorem 3.13 (iii) consider the following.
$\underline{\text { Example 3.14. Let } f(x)=\log (p) \oplus(p \ominus 1) x \text {. Then, as we have seen } F_{B}(x)=}$ $(p x) \otimes(c)$. Consequently,

$$
\begin{aligned}
& \otimes \int_{a}^{b}\left[(f(x))_{B} \oplus(d x)_{B}\right]=\log \left\langle\int_{a}^{b} e^{[\log (p)+(p-1) x+x]} d x\right\rangle \\
& =\log \left[\int_{a}^{b} p e^{p x} d x\right]=\log \left[e^{p b}+e^{c}-e^{p a}-e^{c}\right]=\left[F_{B}(b)\right] \otimes\left[(j \pi)+F_{B}(a)\right] .
\end{aligned}
$$

To argue the Second Fundamental Theorem of Blackhole Calculus let a be in an interval over which $f(x)$ is continuous. Then certainly

$$
(d / d x)\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

Now observe that

$$
\begin{aligned}
& (d / d x)_{B}\left\langle\otimes \int_{a}^{x}\left[f(t)_{B} \oplus(d t)_{B}\right]\right\rangle=(d / d x)_{B}\left\langle\log \left[\int_{a}^{x} e^{f(t)+t} d t\right]\right\rangle \\
& =\log \frac{e^{[f(x)+x]}}{\int_{a}^{x} e^{f(t)+t} d t} \oplus\left\langle\log \left[\int_{a}^{x} e^{f(t)+t} d t\right]\right\rangle \oplus x \\
& =f(x) \oplus x \ominus x=f(x)
\end{aligned}
$$

Theorem 3.16.

$$
\left(\iint f(x, y) d y d x\right)_{B}=\log \left(\iint \exp \left\{[f(x)]_{B}+x+y\right\} d y d x\right)
$$

Proof.

$$
\begin{aligned}
{\left[\iint f(x, y) d y d x\right]_{B} } & =\left\{\int\left[\int f(x, y) d y\right]_{B} d x\right\}_{B} \\
& =\left(\int \log \left\langle\int \exp \left\{[f(x)]_{B}+y\right\} d y\right\rangle d x\right)_{B} \\
& =\left(\log \int e^{x}\left\langle\int \exp \left\{[f(x)]_{B}+y\right\} d y\right\rangle d x\right)_{B} \\
& \left.=\log \left\langle\iint \exp \left\{[f(x)]_{B}+x+y\right] d y\right\rangle d x\right)_{B}
\end{aligned}
$$

Example 3.17. Clearly $\left(\ln x+c_{1}\right)\left(\ln x+c_{2}\right)=\iint d x d y / x y$. We now descend to obtain

$$
\begin{aligned}
\iint(1 / x y)_{B} \oplus(d x)_{B} \oplus(d y)_{B} & =\iint(\ominus x \ominus y) \oplus(d x)_{B} \oplus(d y)_{B} \\
& =\log \left\{\iint \exp (-x-y+x+y) d x d y\right\} \\
& =\log \left(\left[\left(x+c_{1}\right)\left(x+c_{2}\right)\right]\right.
\end{aligned}
$$

We now ascend to obtain

$$
\exp \left\{\log \left[\left(\ln x+c_{1}\right)\left(\ln y+c_{2}\right)\right]\right\}=\left(\ln x+c_{1}\right)\left(\ln y+c_{2}\right)
$$

4. Blackhole Differential Equations. To understand how to apply blackhole calculus to ordinary space consider the following.

Example 4.1. Let $d y / d x=y$.
Solution. We now descend into the blackhole to obtain

$$
(d y / d x)_{B}=(y)_{B}
$$

The left side can be calculated using Theorem 3.2. The right term can be determined by "e-ing" each variable and then "logging" the resulting expression. So we have

$$
\log (d y / d x) \oplus y \ominus x=y, \quad \text { (ii) }
$$

or

$$
d y / d x=e^{x} \text { which implies } y=e^{x}+\ln (c) .
$$

To ascend to ordinary space by "logging" each variable and then "e-ing" the entire expression, or

$$
\exp [\log (y)]=\exp \left[e^{\log (x)}+\log (c)\right] \text { which gives } y=c e^{x}
$$

Example 4.2. $d y / d x=-x / y$.
Solution. We now descend to obtain

$$
\log (d y / d x) \oplus y \ominus x=(j \pi) \oplus x \ominus y
$$

or

$$
\log (d y / d x)=(j \pi) \oplus 2 x \ominus 2 y \text { which implies } e^{2 x} / 2+e^{2 y} / 2=c
$$

We now ascend to obtain

$$
\exp \left(x^{2} / 2+y^{2} / 2\right)=e^{c} \text { which implies } x^{2} / 2+y^{2} / 2=c
$$

$\underline{\text { Example 4.3. } d y / d x=(y / x)\{1-[\ln (y)] /[\ln (x)]\} . ~}$
Solution. We descend to obtain

$$
\log (d y / d x) \oplus y \ominus x=y \ominus x \oplus \log [1-(y / x)]
$$

or

$$
d y / d x+y / x=1
$$

whose solution is

$$
y=x / 2+c / x
$$

We now ascend to obtain

$$
y=\exp \{[\ln (x) / 2]+[c / \ln (x)]\}
$$

or the solution

$$
y=(\sqrt{x}) e^{[c / \ln (x)]}
$$

Example 4.4. $d y / d x=(y / x)(\ln y / \ln x)[1-(\ln x)(\ln y)]$.
Solution. We descend to

$$
\log (d y / d x) \oplus y \ominus x=y \ominus x \oplus \log [(y / x)(1-x y)]
$$

or

$$
d y / d x+(-1 / x) y=(-1) y^{2}
$$

which is recognized at once as a Bernoulli differential equation whose solution is

$$
y=\left[2 x /\left(x^{2}+2 c\right)\right]
$$

We now ascend to obtain the solution

$$
y=\exp \left\{2 \ln x /\left[(\ln x)^{2}+2 c\right]\right\}
$$

Example 4.5. $d^{2} y / d x^{2}=(d y / d x)^{2} / y$.
Solution. Descend to obtain

$$
\left\{\log \left[y^{\prime \prime}+\left(y^{\prime}\right)^{2}-y^{\prime}\right]\right\} \oplus y \ominus 2 x=2\left[\log \left(y^{\prime}\right) \oplus y \ominus x\right] \ominus y
$$

or

$$
y^{\prime \prime}-y^{\prime}=0
$$

whose solution is

$$
y=c_{1}+c_{2} e^{x}
$$

We now ascend to obtain the solution

$$
y=c_{1} \exp \left(c_{2} x\right)
$$

5. Blackhole Signal Processing. All undefined and underdefined terms and symbols used in this section can be found in chapter 5 of [1]. In fact in [1] we are given a definition of a superposition H, a generalization of a system transformation, which must satisfy the following.
6. $H\left[x_{1}(n) \triangle x_{2}(n)\right]=H\left[x_{1}(n) \circ x_{2}(n)\right]$.
7. $H[c: x(n)]=c \odot H[x(n)]$.

Here, \triangle is an input operation, \circ is an output operation and \odot represents scalar multiplication.

Now define $H: C \rightarrow S_{B}$ by $H(z)=\log (z)$.
If we let
i. \triangle be ordinary addition, + , in C,
ii. ○ be subaddition, \otimes, in S_{B},
iii. : be scalar multiplication in C, and
iv. * be a scalar operation in S_{B} over C defined by

$$
c * H[x]=\log (c) \oplus H(x)
$$

then we have a generalized superposition H (where H stands for homomorphism.)
But in [1] we can show that this homomorphic system can be written as a cascade of three systems provided that \otimes is commutative and associative and that we can prove the following.

Theorem 5.1. The additive group S_{B} space under \otimes is a vector space over C with scalar multiplication $*$.

Proof. Let $\alpha, \beta \in C$ and $v, w \in S_{B}$. We can now easily establish the four properties of a vector space.
i.

$$
\begin{aligned}
\alpha *(v \otimes w) & =\log (\alpha) \oplus(v \otimes w) \\
& =[\log (\alpha) \oplus v] \otimes[\log (\alpha) \oplus w] \\
& =(\alpha * v) \otimes(\alpha * w) .
\end{aligned}
$$

ii.

$$
\begin{aligned}
(\alpha \oplus \beta) * v & =\log (\alpha+\beta) \oplus v \\
& =[\log (\alpha) \otimes \log (\beta)] \oplus v \\
& =[\log (\alpha) \oplus v] \otimes[\log (\beta) \oplus w] \\
& =(\alpha * v) \otimes(\beta * w)
\end{aligned}
$$

iii.

$$
\begin{aligned}
\alpha *(\beta * v) & =\log (\alpha) \oplus[\log (\beta) \oplus v] \\
& =\log (\alpha \beta) \oplus v \\
& =(\alpha \beta) * v
\end{aligned}
$$

$i v$.

$$
\begin{aligned}
1 * v & =\log (1) \oplus v \\
& =v .
\end{aligned}
$$

Again using [1], we know that since the system inputs constitute a vector space of complex numbers under addition and ordinary scalar multiplication and that the homomorphic system H outputs constitute a vector space under \otimes, the blackhole addition, and $*$, the scalar multiplication, all systems of this class can be represented as a cascade of three systems where the existence of D and L, a linear system, is guaranteed.

6. Whitehole Analysis. Set $S_{W}=S U\{+\infty\}$. We define an operation \oslash on S_{W} by

$$
z \oslash w=\log \left\{1 /\left[\left(1 / e^{z}\right)+\left(1 / e^{w}\right)\right]\right\}
$$

if $z, w \in S$ and $+\infty$ otherwise. It is now easy to show, by similar arguments as before, the following.

Theorem 6.1. $(C,+, \cdot) \cong\left(S_{W}, \oslash, \oplus\right)$.
Theorem 6.2. $(f)_{W}^{\prime}(x)=f(x) \ominus x \ominus \log \left[f^{\prime}(x)\right]$.
Corollary 6.3
i. $\overline{(c)_{W}^{\prime}}=+\infty$.
ii. $(x)_{W}^{\prime}=0$.
iii. $(p x)_{W}^{\prime}=(p \ominus 1) x \ominus \log (p)$.
iv. $\left(e^{x}\right)_{W}^{\prime}=e^{x} \ominus 2 x$.
v. $\left(-e^{-x}\right)_{W}^{\prime}=-e^{-x}$.
vi. $[\log (p x)]_{W}^{\prime}=[\log (x)]-x$.
vii. $[p \log (x)]_{W}^{\prime}=[\log (x / p)]-x$.
viii. $[\sin (x)]_{W}^{\prime}=\sin (x) \ominus x \ominus \log [\cos (x)]$.
ix. $[p \log (x)]_{W}^{\prime}=\cos (x) \ominus x \ominus \log [-\sin (x)]$.
x. $\left[f^{\prime \prime}\right]_{W}=y \ominus 2 x \ominus \log \left[\left(y^{\prime}\right)^{2}-y^{\prime}-y^{\prime \prime}\right]$.

Theorem 6.4. $\left[\int f(x) d x\right]_{W}=\ominus \log \left\{\ominus\left[\int e^{-[f(x)+x]} d x\right]\right\}$.
Theorem 6.5. $(y)_{B}^{\prime} \oplus(y)_{W}^{\prime}=2(y \ominus x)$.
7. Blackhole Vectors. Again using Theorem 2.1 we see at once that the blackhole distance D_{B} between any two points (a, b) and (c, d) in Blackhole space is given by
7.1

$$
D_{B}[(a, b),(c, d)]=\left\{\log \left[\left(e^{c}-e^{a}\right)^{2}+\left(e^{d}-e^{b}\right)^{2}\right]\right\} / 2
$$

As we have seen before a positive number in C is transformed into a real in B (and negative into complex.) And so it is not surprising then that a Blackhole distance can be negative but never complex. Now let $\langle a, b\rangle_{B}$ be a vector in B. Denote the norm of this vector, the Blackhole distance between the point (a, b) in B and $-\infty$, by $\left\|\langle a, b\rangle_{B}\right\|_{B}$. Furthermore, blackhole vector addition is defined by $\langle a, b\rangle_{B} \otimes\langle c, d\rangle_{B}=\langle a \otimes c, b \otimes d\rangle_{B}$. A particular case of 7.1 is given by
7.2

$$
\left\|\langle a, b\rangle_{B}\right\|_{B}=D_{B}[(a, b),(-\infty,-\infty)]=\left[\log \left(e^{2 a}+e^{2 d}\right)\right] / 2
$$

The triangle inequality may be restated as
7.3 Let v and w be two vectors in B. Then

$$
\left\|v_{B} \otimes w_{B}\right\|_{B} \leq\left\|v_{B}\right\|_{B} \otimes\left\|w_{B}\right\|_{B} .
$$

Proof. By the triangle inequality

$$
\begin{aligned}
\left\|v_{B}\right\|_{B} \otimes\left\|w_{B}\right\|_{B} & =\left\{\left[\log \left(e^{2 a}+e^{2 b}\right)\right] / 2\right\} \otimes\left\{\left[\log \left(e^{2 c}+e^{2 d}\right)\right] / 2\right\} \\
& =\log \left[\sqrt{\left(e^{2 a}+e^{2 b}\right)}+\sqrt{\left(e^{2 c}+e^{2 d}\right)}\right] \\
& =\log \left\{\sqrt{\left[\left(e^{a}+e^{c}\right)^{2}+\left(e^{b}+e^{d}\right)^{2}\right]}\right\} .
\end{aligned}
$$

But,

$$
\begin{aligned}
& \left\{\log \left[\left(e^{a}+e^{c}\right)^{2}+\left(e^{b}+e^{d}\right)^{2}\right]\right\} / 2 \\
& =\left\|\left\langle\log \left(e^{a}+e^{c}\right), \log \left(e^{b}+e^{d}\right)\right\rangle\right\|_{B} \\
& =\|\langle a \otimes c, b \otimes d\rangle\| \\
& =\left\|v_{B} \otimes w_{B}\right\|_{B} .
\end{aligned}
$$

8. Blackhole Programming. We know, by Theorem 2.1, that each operation and function has a unique blackhole image. For example
9. $f(x) \rightarrow \log \left[f\left(e^{x}\right)\right]$.
10. $d^{2} y / d x^{2} \rightarrow\left\{\log \left[\left(d^{2} y / d x^{2}\right) \oplus(d y / d x)^{2} \oplus d y / d x\right]\right\} \oplus y \ominus 2 x$.

Consequently there exists a meta-blackhole algorithm which, though possibly of interest in itself, will accelerate any program in which multiplication and exponentiation dominate addition and subtraction. But we save this for a later paper.

Acknowledgement. This research was sponsored by the Air Force Office of Scientific Research/AFSC, United States Air Force, under Contract F49620-93-C-0063. The Air Force is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notification hereon.

Reference

1. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

David Choate
300 N. Broadway
Department of Mathematics
Transylvania University
Lexington, KY 40508-1797
email: dchoate@mail.transy.edu

