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BLACKHOLE ANALYSIS

David Choate

Abstract. Let S = {z = x+ yj | x and y real ,−π < y ≤ π} or equivalently,

after an appropriate adjustment of the residue of y modulo 2π, S = {z = x + y

(mod 2π)j | x and y real}, a horizontal strip. Let SB = SU{−∞}. Also, let

z = x1 + y1j and w = x2 + y2j ∈ SB . Define an operation ⊕, called blackhole-

multiplication on SB as

z ⊕ w = (x1 + x2) + [(y1 + y2) mod (2π)]j

if both z and w are in S; otherwise z ⊕ w = −∞.

Now define z⊗w = log(ez + ew). Let C be the complex field. Then (C,+, ·) ∼=
(SB ,⊗,⊕), a parallel universe where some defiant differential equations are taught

humility.

Blackhole signal processing yields a new superposition.

And there exists a blackhole meta-algorithm which accelerates any program in

which multiplication and exponentiation dominate addition and subtraction.

1. Blackhole Addition. Let S = {z = x + yj | x and y real,−π < y ≤ π}
or equivalently, after an appropriate adjustment of the residue of y modulo 2π,

S = {z = x+ y (mod 2π)j | x and y real}, a horizontal strip. Let SB = SU{−∞}.
Now let z = x1 + y1j and w = x2 + y2j ∈ SB . Define a blackhole or B-

multiplication on SB as

z ⊕ w = (x1 + x2) + [(y1 + y2) mod (2π)]j

provided both z and w are in S; otherwise, z ⊕ w = −∞.

And if z = rejθ, then as usual define log(z) = ln |r|+[θ (mod 2π)]j again after

the appropriate adjustment of the residue. Clearly

log(zw) = log(z)⊕ log(w).

Now let z, w ∈ SB . We define an operation called blackhole addition or B-

addition on SB , denoted by ⊗, as

z ⊗ w = log(ez + ew).
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If we define z ⊗−∞ = z = z ⊗−∞ for every z in SB , then ⊗ is an operation

on SB .

And clearly

log(z + w) = log(z)⊗ log(w).

2. The Field (SB, ⊕ , ⊗ ). It is an easy exercise to show that (SB ,⊕,⊗) is

a field. But for the purpose of illustration observe that the B-additive identity is

−∞ since

z ⊗−∞ = log(ez + e−∞) = z.

Also observe that if z ∈ S, then its B-additive inverse is πj ⊕ z since

z ⊗ (jπ ⊕ z) = log(ez + ejπ⊕z) = log[ez(1 + ejπ)] = log(0) = −∞.

And certainly the B-additive inverse of −∞ is −∞. Therefore every element

in SB has a B-additive inverse. Furthermore, B-division, denoted by 	, may be

defined as

z 	 w = z ⊕ (jπ ⊕ w).

Furthermore, the distributive law of B-multiplication over B-addition can be

established with the following calculation. For u, v, w ∈ SB ,

u⊕ (v ⊗ w) = log(eu)⊕ log(ev + ew) = log[eu(ev + ew)]

= log(eu+v + eu+w) = log(eu⊕v + eu⊕w)

= (u⊕ v)⊗ (u⊕ w).

Theorem 2.1. (C, ·,+) ∼= (SB ,⊕,⊗).

Proof. Define φ:C → SB by φ(z) = log(z). Then

φ(z1z2) = log(z1z2) = log(z1)⊕ log(z2) = φ(z1)⊕ φ(z2).

Furthermore,

φ(z1 + z2) = log(z1 + z2) = log(z1)⊗ log(z2) = φ(z1)⊗ φ(z2).

If w ∈ S, then its preimage under φ, w ∈ S, is ew. And since the preimage of

−∞ is 0, φ is onto.

If φ(z) = 0⊗, then log(z) = −∞, or z = 0; so φ is one-to-one.
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3. Blackhole Calculus.

Definition 3.1. The function f is said to be B-differentiable at x if the limit

lim
h→−∞

{[f(x⊗ h)⊗ (jπ ⊕ f(x))]	 h},

denoted by (f)′B(x), exists.

Theorem 3.2. Suppose f is differentiable. Then f is B-differentiable and

(f)′B(x) = [log(dy/dx)]⊕ y 	 x.

Proof. By the definition and l’Hopital’s Rule,

(f)′B(x) = lim
h→−∞

〈{f [log(ex + eh)]⊗ [jπ ⊕ f(x)]} 	 h〉

= log[ lim
h→−∞

(〈exp{f [log(ex + eh)]} − exp(f(x))〉/eh)]

= log( lim
h→−∞

{f ′[log(ex + eh)] exp{f [log(ex + eh)]}/(ex + eh)})

= log[f ′(x)ef(x)	x] = {log[f ′(x)]} ⊕ f(x)	 x.

Corollary 3.3. Let c and p be constants. Then

i. (c)′B = −∞.

ii. (px)′B(x) = log(p)⊕ (p	 1)x.

iii. [log(x)]′B = 	x.

iv. (ex ⊕ c)′B = ex.

v. [log(px)]′B = log(p)	 x.

vi. [p log(x)]′B = 	x⊕ log(pxp−1).

vii. (xp)′B = xp 	 x⊕ log(pxp−1).

viii. (sinx)′B = log(cosx)⊕ sinx	 x.

ix. (cosx)′B = log(	 sinx)⊕ cosx	 x.

x. (f)′′B(x) = log{f ′′(x) + [f ′(x)]2 − f ′(x)} ⊕ f(x)	 2x.
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Corollary 3.4. Let f(x) be a real valued function in some interval I. Then

f(x) is increasing or decreasing in I if and only if (f)′B is real or purely imaginary

in I.

Theorem 3.4.5. Let f(x) be differentiable. Then (fB)′B = (f ′)B .

Proof. By definition, fB(x) = log[f(ex)]. Then,

[fB(x)]′B = log[exf ′(ex)/f(ex)]⊕ log[f(ex)]	 x = x⊕ log[f ′(ex)]	 x = [f ′(x)]B .

The isomorphism in Theorem 2.1 is a portal into a parallel universe where we

find the following.

Theorem 3.5. Suppose f and g are B-differentiable. Then

i. (c⊕ f)′B(x) = [c⊕ (f)]′B(x).

ii. (f ⊗ g)′B = (f)′B ⊗ (g)′B .

iii. (f ⊕ g)′B = [f ⊕ (g)′B ]⊗ [g ⊕ (f)′B ].

To illustrate 3.5(iii) consider the following.

Example 3.6. Let f(x) = px and g(x) = qx. Then

[f ⊕ (g)′B ]⊗ [g ⊕ (f)′B ] = {px⊕ [(log q ⊕ (q 	 1)x]} ⊗ {qx⊕ [log p⊕ (p	 1)x]}
= log{qe[px+(q−1)x] + pe[qx+(p−1)x]}
= log{qe[px⊕(q	1)x] + pe[qx⊕(p	1)x]}
= log(p⊕ q)⊕ [(p⊕ q)	 1]x

= (f ⊕ g)′B .

Definition 3.7. Let

⊗
n∑
i=1

ai = a1 ⊗ a2 ⊗ · · · ⊗ an.

The blackhole definite integral from a to b is given by

lim
(4x)B→−∞

〈
⊗

n∑
i=1

[(f(xi))B ⊕ (4x)B ]

〉
,
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where (4x)B = [b⊗ (jπ⊕ a)]	n and xi is in the ith subinterval. For this limit we

use the notation

⊗
∫ b

a

[(f(x)]B ⊕ (dx)B ].

Theorem 3.8.

⊗
∫ b

a

[f(x)]B ⊕ [(dx)B ] = log

[ ∫ b

a

e[f(x)]B+xdx

]
.

Proof.

⊗
∫ b

a

[f(x)]B ⊕ [(dx)B ] = ⊗
∫ b

a

[f(x)Ba ⊕ (dx)B ]

= lim
(4x)B→−∞

log[(ef(x1))(ex1 − ex0) + · · ·+ (ef(xn))(exn − exn+1)]

= lim
(4x)B→−∞

log[ef(x1)+x1 + · · ·+ ef(xn)+xn + ef(x1)+x0 + · · ·+ ef(xn)+xn−1 ].

Set x0 = a. Without loss of generality we may assume that (4x)B = xi ⊗ (jπ ⊕
xi−1) = log[exp(xi)− exp(xi−1)]. Set 4x = (b− a)/n. After multiplying the last n

terms of the argument by e4x/e4x and all terms by 4x/4x we have by l’Hopital’s

Rule that

⊗
∫ b

a

[(f(x))B ⊕ (dx)B ]

= log

[
lim

(4x)B→−∞

(e4x − 1)

(4xe4x)

]
⊕ log

∫ b

a

[ef(x)+xdx] = log

∫ b

a

ef(x)+xdx

= log

[∫ b

a

ef(x)+xdx

]
.
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In order to get a feel for indefinite blackhole integrals consider the following.

Example 3.9. Recall that (log x)′B = 	x.

⊗
∫

[(	x)B ⊕ (dx)B ] = log

[∫
e0dx

]
= log{x+ ec} = (log x)⊗ (c).

Example 3.10. Recall that (px)′B = log(p)⊕ (p	 1)x.

⊗
∫

[log(p)⊕ (p	 1)x]⊕ (dx)B ] = log

(∫
pepxdx

)
= log(epx + ec) = (px)⊗ (c).

Example 3.11. Recall that (ex)′B = ex.

⊗
∫

[ex ⊕ (dx)B ] = log

{∫
[exp(ex + x)]dx

}
= log[exp(ex) + ec] = (ex)⊗ (c).

Note 3.12. These examples indicate that

⊗
∫

[(f(x))∗ ⊕ (dx)∗] = [F∗(x)⊗ c],

where F∗(x) is the B-antiderivative of f(x).

Other blackhole theorems are also immediate from Theorem 2.1.

Theorem 3.13.

(i) ⊗
∫ a

a

[(f(x))B + (dx)B ] = −∞.

(ii)〈
⊗
∫ b

a

[(f(x))B⊕(dx)B ]

〉
⊗
〈
⊗
∫ c

b

[(f(x))B⊕(dx)B ]

〉
=

〈
⊗
∫ c

a

[(f(x))B⊕(dx)B ]

〉
.
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And clearly the blackhole version of the First Fundamental Theorem of Calculus is

given by

(iii) ⊗
∫ b

a

[(f(x))B ⊕ (dx)B ] = [FB(b)]⊗ [(jπ)⊕ FB(a)].

To illustrate Theorem 3.13 (iii) consider the following.

Example 3.14. Let f(x) = log(p) ⊕ (p 	 1)x. Then, as we have seen FB(x) =

(px)⊗ (c). Consequently,

⊗
∫ b

a

[(f(x))B ⊕ (dx)B ] = log

〈∫ b

a

e[log(p)+(p−1)x+x]dx

〉

= log

[∫ b

a

pepxdx

]
= log[epb + ec − epa − ec] = [FB(b)]⊗ [(jπ) + FB(a)].

To argue the Second Fundamental Theorem of Blackhole Calculus let a be in an

interval over which f(x) is continuous. Then certainly

(d/dx)

[∫ x

a

f(t)dt

]
= f(x).

Now observe that

(d/dx)B

〈
⊗
∫ x

a

[f(t)B ⊕ (dt)B ]

〉
= (d/dx)B

〈
log

[∫ x

a

ef(t)+tdt

]〉

= log
e[f(x)+x]∫ x
a
ef(t)+tdt

⊕
〈

log

[∫ x

a

ef(t)+tdt

]〉
⊕ x

= f(x)⊕ x	 x = f(x).
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Theorem 3.16.

(∫ ∫
f(x, y)dydx

)
B

= log

(∫ ∫
exp{[f(x)]B + x+ y}dydx

)
.

Proof.

[∫ ∫
f(x, y)dydx

]
B

=

{∫ [∫
f(x, y)dy

]
B

dx

}
B

=

(∫
log

〈∫
exp{[f(x)]B + y}dy

〉
dx

)
B

=

(
log

∫
ex
〈∫

exp{[f(x)]B + y}dy
〉
dx

)
B

= log

〈∫ ∫
exp{[f(x)]B + x+ y]dy

〉
dx

)
B

.

Example 3.17. Clearly (lnx + c1)(lnx + c2) =
∫ ∫

dxdy/xy. We now descend

to obtain

∫ ∫
(1/xy)B ⊕ (dx)B ⊕ (dy)B =

∫ ∫
(	x	 y)⊕ (dx)B ⊕ (dy)B

= log

{∫ ∫
exp(−x− y + x+ y)dxdy

}

= log([(x+ c1)(x+ c2)].

We now ascend to obtain

exp{log[(lnx+ c1)(ln y + c2)]} = (lnx+ c1)(ln y + c2).
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4. Blackhole Differential Equations. To understand how to apply black-

hole calculus to ordinary space consider the following.

Example 4.1. Let dy/dx = y.

Solution. We now descend into the blackhole to obtain

(dy/dx)B = (y)B .

The left side can be calculated using Theorem 3.2. The right term can be

determined by “e-ing” each variable and then “logging” the resulting expression.

So we have

log(dy/dx)⊕ y 	 x = y, (ii)

or

dy/dx = ex which implies y = ex + ln(c).

To ascend to ordinary space by “logging” each variable and then “e-ing” the entire

expression, or

exp[log(y)] = exp[elog(x) + log(c)] which gives y = cex.

Example 4.2. dy/dx = −x/y.

Solution. We now descend to obtain

log(dy/dx)⊕ y 	 x = (jπ)⊕ x	 y,

or

log(dy/dx) = (jπ)⊕ 2x	 2y which implies e2x/2 + e2y/2 = c.

We now ascend to obtain

exp(x2/2 + y2/2) = ec which implies x2/2 + y2/2 = c.

Example 4.3. dy/dx = (y/x){1− [ln(y)]/[ln(x)]}.

Solution. We descend to obtain

log(dy/dx)⊕ y 	 x = y 	 x⊕ log[1− (y/x)],

or

dy/dx+ y/x = 1
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whose solution is

y = x/2 + c/x.

We now ascend to obtain

y = exp{[ln(x)/2] + [c/ ln(x)]},

or the solution

y = (
√
x)e[c/ ln(x)].

Example 4.4. dy/dx = (y/x)(ln y/ lnx)[1− (lnx)(ln y)].

Solution. We descend to

log(dy/dx)⊕ y 	 x = y 	 x⊕ log[(y/x)(1− xy)],

or

dy/dx+ (−1/x)y = (−1)y2

which is recognized at once as a Bernoulli differential equation whose solution is

y = [2x/(x2 + 2c)].

We now ascend to obtain the solution

y = exp{2 lnx/[(lnx)2 + 2c]}.

Example 4.5. d2y/dx2 = (dy/dx)2/y.

Solution. Descend to obtain

{log[y′′ + (y′)2 − y′]} ⊕ y 	 2x = 2[log(y′)⊕ y 	 x]	 y,

or

y′′ − y′ = 0

whose solution is

y = c1 + c2e
x.

We now ascend to obtain the solution

y = c1 exp(c2x).
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5. Blackhole Signal Processing. All undefined and underdefined terms and

symbols used in this section can be found in chapter 5 of [1]. In fact in [1] we are

given a definition of a superposition H, a generalization of a system transformation,

which must satisfy the following.

1. H[x1(n)4x2(n)] = H[x1(n) ◦ x2(n)].

2. H[c : x(n)] = c�H[x(n)].

Here, 4 is an input operation, ◦ is an output operation and � represents scalar

multiplication.

Now define H:C → SB by H(z) = log(z).

If we let

i. 4 be ordinary addition, +, in C,

ii. ◦ be subaddition, ⊗, in SB ,

iii. : be scalar multiplication in C, and

iv. ∗ be a scalar operation in SB over C defined by

c ∗H[x] = log(c)⊕H(x),

then we have a generalized superposition H (where H stands for homomorphism.)

But in [1] we can show that this homomorphic system can be written as a

cascade of three systems provided that ⊗ is commutative and associative and that

we can prove the following.

Theorem 5.1. The additive group SB space under ⊗ is a vector space over C

with scalar multiplication ∗.

Proof. Let α, β ∈ C and v, w ∈ SB . We can now easily establish the four

properties of a vector space.

α ∗ (v ⊗ w) = log(α)⊕ (v ⊗ w)i.

= [log(α)⊕ v]⊗ [log(α)⊕ w]

= (α ∗ v)⊗ (α ∗ w).

(α⊕ β) ∗ v = log(α+ β)⊕ vii.

= [log(α)⊗ log(β)]⊕ v
= [log(α)⊕ v]⊗ [log(β)⊕ w]

= (α ∗ v)⊗ (β ∗ w).
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α ∗ (β ∗ v) = log(α)⊕ [log(β)⊕ v]iii.

= log(αβ)⊕ v
= (αβ) ∗ v.

1 ∗ v = log(1)⊕ viv.

= v.

Again using [1], we know that since the system inputs constitute a vector

space of complex numbers under addition and ordinary scalar multiplication and

that the homomorphic system H outputs constitute a vector space under ⊗, the

blackhole addition, and ∗, the scalar multiplication, all systems of this class can be

represented as a cascade of three systems where the existence of D and L, a linear

system, is guaranteed.



VOLUME 11, NUMBER 2, SPRING 1999 133

6. Whitehole Analysis. Set SW = SU{+∞}. We define an operation � on

SW by

z � w = log{1/[(1/ez) + (1/ew)]}

if z, w ∈ S and +∞ otherwise. It is now easy to show, by similar arguments as

before, the following.

Theorem 6.1. (C,+, ·) ∼= (SW ,�,⊕).

Theorem 6.2. (f)′W (x) = f(x)	 x	 log[f ′(x)].

Corollary 6.3

i. (c)′W = +∞.

ii. (x)′W = 0.

iii. (px)′W = (p	 1)x	 log(p).

iv. (ex)′W = ex 	 2x.

v. (−e−x)′W = −e−x.

vi. [log(px)]′W = [log(x)]− x.

vii. [p log(x)]′W = [log(x/p)]− x.

viii. [sin(x)]′W = sin(x)	 x	 log[cos(x)].

ix. [p log(x)]′W = cos(x)	 x	 log[− sin(x)].

x. [f ′′]W = y 	 2x	 log[(y′)2 − y′ − y′′].

Theorem 6.4. [
∫
f(x)dx]W = 	 log{	[

∫
e−[f(x)+x]dx]}.

Theorem 6.5. (y)′B ⊕ (y)′W = 2(y 	 x).

7. Blackhole Vectors. Again using Theorem 2.1 we see at once that the

blackhole distance DB between any two points (a, b) and (c, d) in Blackhole space

is given by

7.1 DB [(a, b), (c, d)] = {log[(ec − ea)2 + (ed − eb)2]}/2.

As we have seen before a positive number in C is transformed into a real in B

(and negative into complex.) And so it is not surprising then that a Blackhole

distance can be negative but never complex. Now let 〈a, b〉B be a vector in B.

Denote the norm of this vector, the Blackhole distance between the point (a, b) in

B and −∞, by ‖〈a, b〉B‖B . Furthermore, blackhole vector addition is defined by

〈a, b〉B ⊗ 〈c, d〉B = 〈a⊗ c, b⊗ d〉B . A particular case of 7.1 is given by

7.2 ‖〈a, b〉B‖B = DB [(a, b), (−∞,−∞)] = [log(e2a + e2d)]/2.



134 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

The triangle inequality may be restated as

7.3 Let v and w be two vectors in B. Then

‖vB ⊗ wB‖B ≤ ‖vB‖B ⊗ ‖wB‖B .

Proof. By the triangle inequality

‖vB‖B ⊗ ‖wB‖B = {[log(e2a + e2b)]/2} ⊗ {[log(e2c + e2d)]/2}

= log

[√
(e2a + e2b) +

√
(e2c + e2d)

]

= log

{√
[(ea + ec)2 + (eb + ed)2]

}
.

But,

{log[(ea + ec)2 + (eb + ed)2]}/2
= ‖〈log(ea + ec), log(eb + ed)〉‖B
= ‖〈a⊗ c, b⊗ d〉‖
= ‖vB ⊗ wB‖B .

8. Blackhole Programming. We know, by Theorem 2.1, that each opera-

tion and function has a unique blackhole image. For example

1. f(x)→ log[f(ex)].

2. d2y/dx2 → {log[(d2y/dx2)⊕ (dy/dx)2 ⊕ dy/dx]} ⊕ y 	 2x.

Consequently there exists a meta-blackhole algorithm which, though possibly

of interest in itself, will accelerate any program in which multiplication and expo-

nentiation dominate addition and subtraction. But we save this for a later paper.
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