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THE ARITHMETIC-MEAN – GEOMETRIC-MEAN INEQUALITY

DERIVED FROM CLOSED POLYNOMIAL FUNCTIONS

James E. Joseph and Myung H. Kwack

An activity which is encouraged in the teaching and study of mathematics is

that of exploring how classical results may be derived from other concepts. The

Arithmetic-Mean – Geometric-Mean Inequality (AMGM) states

n∏
m=1

xm ≤
(∑n

m=1 xm
n

)n

for all positive integers n and nonnegative reals x1, . . . , xn, with equality if and

only if xk = xj for all k and j, where
∏n
m=1 xm and

∑n
m=1 xm denote the product

and sum of the numbers x1, . . . , xn, respectively. The purpose of this note is to

show that this classical inequality is an easy consequence of the fact that the func-

tion P defined on Rn, Euclidean n-space, by P (x1, . . . , xn) =
∑n
m=1 |xm| is a

closed function, i.e. if A is a closed subset of Rn, then P (A) = {P (x1, . . . , xn) :

(x1, . . . , xn) ∈ A}, the image of A under P , is a closed subset of R. When re-

stricted to Rn+ = {(x1, . . . , xn) ∈ Rn : xm ≥ 0 for each m}, P is a polynomial

function. We found this proof while studying closed functions between Euclidean

spaces. Although we do not know if the proof is new, it does represent an excellent

opportunity for students to see continuous functions, closed functions, and great-

est lower bound working together. We also give a proof using compactness and

continuity of the function Q defined on Rn by Q(x1, . . . , xn) =
∏n
m=1 xm (see [1,

2]).

The following result will be applied to establish the AMGM.

Lemma. The function P defined on Rn by P (x1, . . . , xn) =
∑n
m=1 |xm| is a

closed function.

Proof. Let A ⊂ Rn be closed, let r ∈ R, and let {(xk1 , . . . , xkn)}∞k=1 be a

sequence in A satisfying P (xk1 , . . . , x
k
n) → r. Then {P (xk1 , . . . , x

k
n) : k = 1, . . . } is

bounded and hence, the sequence {(xk1 , . . . , xkn)}∞k=1 is a bounded sequence in A. By

the Bolzano-Weierstrass Theorem, this sequence has a subsequence, which we again

call {(xk1 , . . . , xkn)}∞k=1, such that (xk1 , . . . , x
k
n)→ (y1, . . . , yn) and (y1, . . . , yn) ∈ A,
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since A is closed. By the continuity of P , we arrive at P (y1, . . . , yn) = r, i.e.

r ∈ P (A).

Example 1. The function P defined on R2 by P (x, y) = x + y is not a closed

function, since A = {(n+ 1
n ,−n) : n is a positive integer } is a closed subset of R2,

P (n+ 1
n ,−n)→ 0, 0 6∈ P (A).

Theorem. The inequality

n∏
m=1

xm ≤
(∑n

m=1 xm
n

)n

holds for all positive integers n and nonnegative reals x1, . . . , xn, with equality if

and only if xk = xj for all k and j.

Proof. Let c ≥ 0 and let A = {(x1, . . . , xn) ∈ Rn+ :
∏n
m=1 xm = c}. Then

A is a closed subset of Rn, since the real-valued function Q defined on Rn by

Q(x1, . . . , xn) =
∏n
m=1 xm is well-known to be continuous. From the Lemma, the

function P defined on Rn by P (x1, . . . , xn) =
∑n
m=1 |xm| is a closed function,

(c, 1, . . . , 1) ∈ A, and P (A) ⊂ [0,∞), so inf P (A) exists and inf P (A) ∈ P (A).

Choose (v1, . . . , vn) ∈ A with P (v1, . . . , vn) = inf P (A). If j and k are integers and

1 ≤ j < k ≤ n, define zm = vm when m is neither j nor k and zj = zk =
√
vjvk.

Then (z1, . . . , zn) ∈ A so
∑n
m=1 vm ≤

∑n
m=1 zm and (

√
vj −

√
vk)2 ≤ 0, giving

vj = vk. It follows that c = vn1 and that inf P (A) = nv1. Now if (x1, . . . , xn) ∈ A,

we obtain

n∏
m=1

xm = c = vn1 ≤
(∑n

m=1 xm
n

)n
.

It is clear that equality holds if and only if xk = xj for all k and j.

It is interesting that the set A in the Proof of the Theorem is not necessarily

bounded in Rn if n > 1, since (m, c/m, 1, . . . , 1) ∈ A for every positive integer m.

Otherwise, we could have relied on the continuity of P to produce the proof, since A

would have been compact. We now give a proof using compactness and continuity.

Let c > 0 and let A = {(x1, . . . , xn) ∈ Rn+ :
∑n
m=1 xm = c} (c = 0 forces xj = xk =

0 for all j and k). Then A is a closed subset of Rn, since the real-valued function

Q defined on Rn by Q(x1, . . . , xn) =
∑n
m=1 xm is continuous. It is obvious that

(c, 0, . . . , 0) ∈ A and A is bounded by nc. Therefore A is compact and nonempty.
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The function P defined on Rn by P (x1, . . . , xn) =
∏n
m=1 xm is continuous so P (A)

is compact and nonempty. Hence, supP (A) exists and supP (A) ∈ P (A). Choose

(v1, . . . , vn) ∈ A with P (v1, . . . , vn) = supP (A). If j and k are integers and

1 ≤ j < k ≤ n, define zm = vm if m is neither j nor k and zj = zk = (vj + vk)/2.

Then (z1, . . . , zn) ∈ A so
∏n
m=1 vm ≥

∏n
m=1 zm and (vj − vk)2 ≤ 0, giving vj = vk.

It follows that c = nv1 and that supP (A) = vn1 . If (x1, . . . , xn) ∈ A, we obtain

n∏
m=1

xm ≤ vn1 = (c/n)n =

(∑n
m=1 xm
n

)n
.

Again, it is clear that equality holds if and only if xk = xj for all k and j.

Example 2 shows that the function P used in the last proof might fail to be a

closed function.

Example 2. The polynomial function P defined on R2 by P (x, y) = xy is not

closed, since the subset A = {(n, 1/n2) : n if a positive integer } is closed in R2 and

P (n, 1/n2)→ 0, while 0 6∈ P (A).

In the proof of the Lemma, we used the fact that the function P is continuous

and that A is bounded if P (A) is bounded. We close with more general statements

in a proposition and corollary. For notational purposes, if a, x ∈ Rn, we represent

the inner product of a and x by a · x, the norm of x by ‖x‖, and the angle between

a and x by ϕ(a, x).

Proposition. Let ε > 0 and let Rna,ε = {x ∈ Rn : |ϕ(a, x)− π
2 | ≥ ε}. If A ⊂ Rna,ε

and a 6= 0, then

(a) A is bounded if and only if {a · x : x ∈ A} is bounded, and

(b) P defined on Rna,ε by P (x) = a · x is a closed function.

Proof. Condition (a) follows immediately from a · x = ‖x‖‖a‖ cos(ϕ(a, x)). In

view of (a), the proof of (b) is essentially the same as that of the Lemma.

Corollary. Let A ⊂ Rn+, let a ∈ Rn+, a 6= 0, and let P be defined on Rn by

P (x) = a · x. Then A is bounded if and only if P (A) is bounded.
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