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EULER’S FORMULA AND DE MOIVRE’S
FORMULA FOR QUATERNIONS

Eungchun Cho

Abstract. Natural generalizations of Euler’s formula and De Moivre’s formula
for quaternions are derived.

1. Introduction. A quaternion q is a linear combination a1 + bi + cj + dk,
where a, b, c, and d are real numbers and

1 = (1, 0, 0, 0), i = (0, 1, 0, 0),

j = (0, 0, 1, 0), k = (0, 0, 0, 1).

The sum of quaternions is the usual component-wise sum and the multiplication is
defined so that (1, 0, 0, 0) is the identity and i, j, and k satisfy

i2 = j2 = k2 = ijk = −1. (1)

It follows from (1) that

ij = k, jk = i, ki = j, and ij = −ji, jk = −kj, ki = −ik.

A quaternion is usually written as a + bi + cj + dk or as α + βj, where α and β
are complex numbers. The complex numbers do not commute with j, but satisfy
jβ = βj. We can also write q = a + ω, where ω = bi + cj + dk, called the pure
quaternion part of q. a is called the real part of q. The conjugate of q is q = a−ω.
We can view the pure quaternion part ω = bi+ cj+ dk as a vector in R3. A simple
computation shows

ω1ω2 = −ω1 · ω2 + ω1 × ω2, (2)

where ω1 · ω2 is the dot product and ω1 × ω2 is the cross product in R3. It follows
from (2) that ω2ω1 = ω1ω2 for any pure quaternion ω1 and ω2. Let ai be real
numbers and βi be pure quaternions. Then

(a1 + β1)(a2 + β2) = (a1a2 − β1 · β2) + a1β2 + a2β1 + β1 × β2. (3)

It follows from (3) that q1q2 = q2 q1 for any quaternion qi. For more details on
quaternions, we refer to [1].
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2. Euler’s Formula and De Moivre’s Formula for Quaternions. We
will use the notation

S3 = {q : |q| = 1} and S2 = {ω : |ω| = 1, ω = −ω}.

S3 is the set of all unit quaternions and S2 is the set of all unit pure quaternions. S3

is a group under quaternion multiplication and is isomorphic to SU(2), the group
of all 2 by 2 unitary matrices of determinant 1. The map

(a, b, c, d) 7→
(
a+ bi −c+ di
c+ di a− bi

)

is a group isomorphism between S3 and SU(2).
Since ω ·ω = 1 and ω×ω = 0 for any ω ∈ S2, we have the following proposition.

Proposition 1. ω2 = −1 for any ω ∈ S2, hence, any ω ∈ S2 has order 4.

We can express any q = a+ bi+ cj + dk ∈ S3 as

q = cos θ + ω sin θ, (4)

where cos θ = a and

ω =
1√

b2 + c2 + d2
(bi+ cj + dk) =

1√
1− a2

(bi+ cj + dk).

This is similar to the polar coordinate expression of a complex number. We can
view θ as the angle between the vector q ∈ R4 and the real axis (the subspace
of real numbers) and ω sin θ as the projection of q onto the subspace R3 of pure
quaternions. We will call (4) the polar expression of a unit quaternion q. Since
ω2 = −1 for any ω ∈ S2, we have a natural generalization of Euler’s formula for
quaternions,

eωθ = 1 + ωθ − θ2

2!
− ωθ

3

3!
+
θ4

4!
+ · · ·

= 1− θ2

2!
+
θ4

4!
− · · ·+ ω

(
θ − θ3

3!
+
θ5

5!
− · · ·

)

= cos θ + ω sin θ
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for any real θ. If the power series definition

cosx = 1− x2

2!
+
x4

4!
− · · · and sinx = x− x3

3!
+
x5

5!
− · · ·

is used for quaternion x, then

cosω = cos i = cosh 1

and sinω = −ωi sin i = iω sinh 1

for every ω ∈ S2. We note the cosine function is constant on the set S2. For more
on Euler’s formula for complex numbers, we refer to [2].

A simple computation and the addition formula for cosine and sine, i.e.,

cos(θ + ψ) = cos θ cosψ − sin θ sinψ and sin(θ + ψ) = cos θ sinψ + sin θ cosψ

prove the following lemma.

Lemma. For any ω ∈ S2, we have

(cos θ + ω sin θ)(cosψ + ω sinψ) = cos(θ + ψ) + ω sin(θ + ψ).

Remark. It follows from the lemma that Kω = {cos θ+ω sin θ : 0 ≤ θ < 2π} is
a subgroup of S3 and is isomorphic to S1.

Proposition 2 (De Moivre’s formula). Let q = eωθ = cos θ+ω sin θ ∈ S3, where

θ is a real and ω ∈ S2. Then,

qn = eωnθ = (cos θ + ω sin θ)n = cosnθ + ω sinnθ (5)

for every integer n.

Proof. The proof is by induction on the nonnegative integers n.

qn+1 = (cos θ + ω sin θ)n+1

= (cosnθ + ω sinnθ)(cos θ + ω sin θ)

= cos(n+ 1)θ + ω sin(n+ 1)θ.
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The formulas holds for all integers n, since

q−1 = cos θ − ω sin θ

and q−n = cosnθ − ω sinnθ = cos(−nθ) + ω sin(−nθ).

Corollary. There are infinitely many unit quaternions satisfying xn = 1.

Proof. For every ω ∈ S2, we have a quaternion q = cos 2π/n + ω sin 2π/n of
order n.

Example. 1
2 (1 + i + j + k) = cos π3 + sin π

3 ( 1√
3
, 1√

3
, 1√

3
) is of order 6 and

1
2 (−1 + i+ j + k) = cos 2π

3 + sin 2π
3 ( 1√

3
, 1√

3
, 1√

3
) is of order 3.
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