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REMARKS ON A FACTORIZATION OF Xn −Yn

Richard E. Bayne, James E. Joseph, Myung H. Kwack, and Thomas H. Lawson

Introduction. Early on, elementary algebra students learn to factor expres-
sions x2 − y2, x3 − y3, . . . , where x and y represent real numbers. Later, they learn
the generalization

xn − yn = (x− y)

n−1
∑

m=0

xmyn−1−m (∗)

for each positive integer n and all real x and y. This identity has been shown to
have various applications throughout the undergraduate mathematics curriculum
and beyond. For example, Johnsonbaugh, using the inequality

bn+1 − an+1

b − a
< (n+ 1)bn

for all positive integers n and real a and b with 0 ≤ a < b, an easy consequence of (∗),
published an old and relatively simple proof of the monotonicity and boundedness
of the sequence {(1 + 1/n)n} in [2]. Evidently, the proof was discovered by Fort in
1864 (see [3]). In [1], there is a nice proof of the existence of nth roots, which is
a good deal simpler than other proofs using the Fundamental Axiom of the Reals
(see [3]) and proofs using the Intermediate Value Theorem (see [5]). The following
characterization of Cn,k is an interesting by-product obtained by relating (∗) to the
Binomial Theorem: If n and k are positive integers with k ≤ n, then

Cn,k =
n−1
∑

m=k−1

Cm,k−1.

We obtain this relationship by combining (∗) and the Binomial Theorem to get

(x + 1)n = 1 + x

n−1
∑

m=0

(x + 1)m = 1 +

n−1
∑

m=0

m
∑

k=0

Cm,k xk+1
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for each real x and then equating coefficients of xm.
The purpose of this note is to present other interesting applications of (∗)

and to begin an investigation of a functional inequality, which we discovered while
studying (∗). In Section 1, we show how inequalities, which are typically found
in elementary analysis courses, as well as some which seem to be absent from the
literature, flow easily from (∗) and how those in the second category may be used
to advantage in elementary courses. In [1], identity (∗) is used to show that for
each positive integer n and all reals x and y,

|xn − yn| ≤ (|x− y|+ |y|)n − |y|n. (1)

Another known inequality, which is easily deduced from (∗), is

(n1/n − 1)2 ≤ 2/n

for each positive integer n (see [4]). We show in this article that it is possible to
prove a stronger inequality, although we are unable to see how (∗) can be used to
verify this inequality. We prove that

(n1/n − 1)2 ≤ 1/n (2)

for each positive integer n.
Following a suggestion of W. Rudin (private communication), we give a shorter

proof than that given for (2) that

(x1/x − 1)2 ≤ 1/x (3)

for each positive real x.
In Section 2, we study real-valued functions f satisfying the functional inequal-

ity
|f(x)− f(y)| ≤ f(|x− y|+ |y|)− f(|y|) (4)

for all x and y in D(f), where D(f) is the domain of f . This study is motivated
by the observation, from (1), that the function f , defined by f(x) = xn, satisfies
(4). We see also that the exponential function satisfies (4).

| exp(x)− exp(y)|

=

{

exp(y)(exp(x− y)− 1) ≤ exp(|x− y|+ |y|)− exp(|y|), if x ≥ y

exp(x)(exp(y − x)− 1) ≤ exp(|x− y|+ |y|)− exp(|y|), if x < y.
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We denote the class of functions satisfying (4) by Ω. It is obvious that constant
functions are elements of Ω and fairly obvious that any f ∈ Ω is nondecreasing on
the set of nonnegative elements of D(f). We show that any f ∈ Ω is continuous
and is convex on [c,∞) if c ≥ 0 and [c,∞) ⊂ D(f). That is,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [c,∞) and 0 ≤ λ ≤ 1. In addition, we show that if f, g ∈ Ω and λ ≥ 0,
then f + g ∈ Ω and λf ∈ Ω. Moreover, if f, g ∈ Ω, f(0) ≥ 0, and g(0) ≥ 0, then
fg ∈ Ω.

1. Some Applications. As an application of (1), for any fixed y and ǫ > 0,
each solution to (|x − y| + |y|)n − |y|n < ǫ is a solution to |xn − yn| < ǫ. Since
(|x− y|+ |y|)n − |y|n < ǫ is equivalent to |x− y| < (ǫ+ |y|n)1/n − |y|,

if ǫ > 0 and 0 < δ ≤ (ǫ+ |y|n)1/n− |y|, then |xn− yn| < ǫ, when |x− y| < δ. (A1)

It should be readily obtainable for the reader that if P (x) =
∑n

m=0 an−mxn−m is
a polynomial function of degree n in x, then

for any ǫ > 0 and any fixed y, |P (x) − P (y)| < ǫ, if |x− y| < δ, (A2)

where

0 < δ ≤ min

{(

ǫ

nK
+ |y|m

)1/m

− |y| : m = 1, . . . , n

}

and
K = max{|an−m| : m = 0, . . . , n− 1}.

The identity (∗), along with the statement (∗∗), offered below without proof, leads
to another useful inequality (5).

Let x and y be real and let n be a positive integer such that xy > 0 (∗∗)
and x1/n is real. Then xk/ny(n−1−k)/n > 0 for each integer k.

Let x and y be real and let n be a positive integer such that xy > 0 and x1/n is
real. Then the following inequality holds.

|x1/n − y1/n| ≤ |x− y|
y(n−1)/n

. (5)
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The verification of (5) comes from (∗) and (∗∗) as follows.

|x− y| = |x1/n − y1/n|
n−1
∑

m=0

xm/ny(n−1−m)/n

≥ |x1/n − y1/n|y(n−1)/n.

Utilizing (5) and (∗), we may establish that for any real x and y and any integer
n for which y1/n is real and any ǫ > 0,

any solution to |x−y| < min{ǫy(n−1)/n, |y|} is a solution to |x1/n−y1/n| < ǫ. (A3)

The exercises below may be used to obtain more experience with applying (∗)
to arrive at other elementary inequalities.

Exercise 1. If p ≥ 1, show that pn ≥ 1 + n(p− 1) for each positive integer n.

Exercise 2. If p ≥ 1, show that pn − 1 ≥ (p − 1)2n(n− 1)/2 for each positive
integer n.

Solution. From (∗) and the result of Exercise 1, we obtain

pn − 1 ≥ (p− 1)

n−1
∑

m=0

pm ≥ (p− 1)2
n−1
∑

m=1

m = (p− 1)2n(n− 1)/2.

Exercise 3. If p > 1, show that n/pn < 2p/n(p− 1)2 for each positive integer
n.

Solution. From the result of Exercise 2, for each positive integer n,

pn+1 ≥ (p− 1)2n(n+ 1)/2 > (p− 1)2n2/2.

Exercise 4. Show that (n1/n − 1)2 ≤ 2/n for each positive integer n.

Solution. From the result of Exercise 2, for n > 1,

n− 1 = (n1/n)n − 1 ≥ (n1/n − 1)2n(n− 1)/2.
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Exercise 5. If x > 0, show that |x1/n − 1| ≤ max{1, 1/x}|x − 1|/n for each
positive integer n.

Solution. For x ≥ 1, we arrive at |x1/n − 1| ≤ |x− 1|/n by applying the result
of Exercise 1 with p = x1/n. For x < 1, we apply the result of Exercise 1 with
p = (1/x)n to conclude that |x1/n − 1| ≤ |x− 1|/(nx). Hence, for all x > 0,

|x1/n − 1| ≤ max{|x− 1|/(nx), |x− 1|/n} = max{1, 1/x}|x− 1|/n.

Although we are unable to see how (∗) could be used to verify (2), we establish
(2) below using the equivalent form (6) for (2):

n ≤
(

1 +
1√
n

)n

(6)

for each positive integer n. If x ≥ 1, there is a positive integer m such that
m ≤ x < m+ 1. For such an m we have

(3/2)m ≤
(

1 +
1

m+ 1

)m2

<

(

1 +
1

x

)x2

,

since

(

1 +
1

m+ 1

)m

is strictly increasing, as can be seen easily by analyzing the expression obtained by
multiplying and dividing

(

1 +
1

m+ 1

)m

by

(

1 +
1

m+ 1

)

.

We have by induction that (3/2)m ≥ (m+ 1)2 for all m ≥ 14. We note that 14 is
the smallest positive integer satisfying this property. We conclude that

x2 <

(

1 +
1

x

)x2
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for all x ≥ 14. We find that (6) holds for every positive integer m ≥ 196. We have,
by direct computation, that each of the integers 1, 2, . . . , 195 satisfies (6). (The
difference (1 + 1/

√
n)n − n strictly increases from 1 at n = 1 to approximately

719727 at n = 195.)

We should point out that we have exhibited

x <

(

1 +
1√
x

)x

for all real x ≥ 196.
Following a suggestion of Rudin, we note that if f is the function defined by

f(x) = ln(1 + x)− x+ x2/2, then

(a) f is increasing on [0,∞) and

(b) f(0) = 0

(observe that x − x2/2 is the sum of the second and third terms of the Taylor
expansion of ln(1 + x) about 0). It follows that

x ln

(

1 +
1√
x

)

− lnx >
√
x− 1

2
− lnx.

Since the minimum value of the expression on the right hand side of the last in-
equality is 3/2− ln 4 which is positive, (3) holds.

2. Some Properties of Ω. The first item in this section is a verification that
functions in Ω are continuous. This will be accomplished by establishing (1◦)–(3◦)
in succession:

(1◦) If f ∈ Ω, then |y|+ n|x− y| ∈ D(f) for all x, y ∈ D(f) and n ≥ 0.

(2◦) If f ∈ Ω and x0, x1, . . . is an increasing sequence of equally spaced nonnegative
reals in D(f), i.e., {xn − xn−1} is a constant sequence, then

(a) f(xn)− f(xn−1) ≥ f(x1)− f(x0) for all n.

(b) f(xn)− f(x0) ≥ n(f(x1)− f(x0)) for all n.

(3◦) If f ∈ Ω, then f is continuous.
To show that (1◦) and (2◦) are valid, we use induction on n. As for (1◦), let

x, y ∈ D(f). Since f ∈ Ω, |y|, |y|+ |x− y| ∈ D(f). If |y|+m|x− y| ∈ D(f) for each
nonnegative m ≤ n, then |y|+ (n+ 1)|x− y| ∈ D(f), since

|y|+ (n+ 1)|x− y| = ||y|+ n|x− y||+ ||y|+ n|x− y| − (|y|+ (n− 1)|x− y|)|.
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Parts (a) and (b) of (2◦) clearly hold for n = 1. Suppose n is an integer for which
(a) is true, i.e., for which f(xn)− f(xn−1) ≥ f(x1)− f(x0). Then

f(xn+1)−f(xn) = f(xn+ |xn−xn−1|)−f(xn) ≥ f(xn)−f(xn−1) ≥ f(x1)−f(x0).

The proof of (a) is complete. If (b) holds for n, then

f(xn+1)− f(x0) = (f(xn+1)− f(xn)) + (f(xn)− f(x0)) ≥ (n+ 1)(f(x1)− f(x0))

from part (a). This completes the demonstration that (1◦) and (2◦) are valid. Now
for (3◦), suppose that f is not constant and that y is a non-isolated point of D(f).
We will show that f is continuous at y. We show first that for each ǫ > 0, there is
a z ∈ D(f) satisfying z > |y| and f(z) < f(|y|) + ǫ. Assume ǫ > 0 and there is no
such z. Since f is not constant, there is a v > |y| such that f(v) > f(|y|). Choose
a positive integer m such that mǫ > f(v)− f(|y|) and an x ∈ D(f) such that x 6= y
and m|x− y| < v − |y|. Then |y|+m|x− y| ∈ D(f) from (1◦) and (2◦) yields

f(v)− f(|y|) ≥ f(|y|+m|x− y|)− f(|y|) ≥ m(f(|y|+ |x− y|)− f(|y|)),

so mǫ > f(v)− f(|y|) ≥ mǫ, a contradiction. Now, if ǫ > 0, choose z ∈ D(f) such
that z > |y|, f(z) < f(|y|)+ǫ and let δ = z−|y|. Then, if x ∈ D(f) and |x−y| < δ,
it follows that

|f(x)− f(y)| ≤ f(|x− y|+ |y|)− f(|y|) ≤ f(δ + |y|)− f(|y|) = f(z)− f(|y|) < ǫ.

Hence, f is continuous at y.

It is fairly obvious, from the arguments made to establish (3◦) that, if f is
strictly increasing and [f(0),∞) is a subset of the range of f , for ǫ > 0, we may
take 0 < δ ≤ f−1[f(|y|) + ǫ]− |y|; in particular, for any ǫ > 0 and any fixed y, we
have

| exp(x)− exp(y)| < ǫ, if |x− y| < ln[exp(|y|) + ǫ]− |y|.

Interestingly, any continuous function f satisfying the condition in (a) under 2◦ for
any increasing sequence x0, x1, . . . of equally spaced nonnegative reals in D(f) also
satisfies

(4◦) If w, x, y, and z are nonnegative reals satisfying w < x < z, x − w = z − y,
and [w, x] ⊂ D(f). Then f(z)− f(y) ≥ f(x)− f(w).

We show first that this assertion is true when w, x, y, and z are rationals. To
this end, let the function f and rationals w, x, y, and z satisfy the hypothesis of
(4◦) and let m be a positive integer such that mx, my, and mz are integers; let P
be a partition of [w, z] into intervals of length 1/m. If P = {w + (j − 1)/m : j =
1, 2, . . . ,m(z−w) + 1}, then for each integer 1 ≤ k ≤ m(x−w), the sequence in P
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(in order of magnitude) beginning at w+ (k− 1)/m and terminating at y+ k/m is
an increasing sequence of equally spaced terms in D(f);

f(y + k/m)− f(y + (k − 1)/m) ≥ f(w + k/m)− f(w + (k − 1)/m),

since f satisfies part (a) of (2◦). Thus,

m(x−w)
∑

k=1

(f(y+ k/m)− f(y+(k− 1)m)) ≥
m(x−w)
∑

k=1

(f(w+ k/m)− f(w+(k− 1)/m)).

Since x−w = z−y, we get f(z)−f(y) ≥ f(x)−f(w). Now, let the real numbers w, x,
y, z and the function f satisfy the hypothesis of (4◦) and let {an}, {bn}, and {cn} be
sequences of nonnegative rationals with w ≤ an < bn ≤ x, y ≤ cn ≤ y + (an − w),
an → w, bn → x. Let dn = cn + bn − an. Then an < bn < dn, bn − an =
dn − cn, [an, dn] ⊂ D(f), so an, bn, cn, dn and f satisfy the hypothesis of (4◦) and
f(dn)− f(cn) ≥ f(bn)− f(an). By continuity, we have f(z)− f(y) ≥ f(x)− f(w).

From part (b) of (2◦), we observe that if f ∈ Ω, a < b and a, (a+b)/2, b ∈ D(f),
then f((a+ b)/2) ≤ (f(a)+f(b))/2. This is equivalent to f being convex on [c,∞),
if c ≥ 0 and [c,∞) ⊂ D(f) (see [5]).

It is not difficult to show that f + g, λf ∈ Ω, whenever f, g ∈ Ω and λ ≥ 0.
We will now establish that if f, g ∈ Ω, f(0) ≥ 0, and g(0) ≥ 0, then the product
fg ∈ Ω. We observe first that f(0) ≥ 0 if and only if |f(x)| ≤ f(|x|) for each
x ∈ D(f). Now if x, y ∈ D(fg), then

|fg(x)− fg(y)| ≤ |f(x)||g(x) − g(y)|+ |g(y)||f(x)− f(y)|
≤ f(|x|)(g(|x − y|+ |y|))− g(|y|)) + g(|y|)(f(|x− y|+ |y|)− f(|y|))
≤ (f(|x− y|+ |y|)(g(|x− y|+ |y|)− g(|y|)) + g(|y|)(f(|x− y|+ |y|)− f(|y|))
≤ fg(|x− y|+ |y|)− fg(|y|).

We close with two examples and an observation for complex-valued functions
of a complex variable.

Example 1. The function f defined by

f(x) =

{

x2, if x ≤ 0

x3, if x ≥ 0
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is differentiable, increasing, and convex on [0,∞); however, f 6∈ Ω, since if x = −1/2
and y = −1/4, we have |f(x)− f(y)| = 12/64 and f(|x− y|+ |y|)− f(|y|) = 7/64.

Example 2. If f and g are defined by f(x) = x3 − 1 and g(x) = x2, then
f, g ∈ Ω, while fg 6∈ Ω.

We point out that (∗) and (1) are also valid if x and y are complex numbers and
that any complex-valued function of a complex variable satisfying (4) is continuous.

We would like to thank Sterling Berberian for reading an earlier version of this
paper and making several useful comments and suggestions.
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