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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

105. [1997, 105] Proposed by Kenneth Davenport, P. O. Box 99901, Pittsburgh,
Pennsylvania.

Evaluate the series

where the denominators are the triangular numbers and every two terms the signs
alternate, i.e. +, +, —, —, +, +, etc.

Solution I by Joseph B. Dence, University of Missouri-St. Louis, St. Louis,
Missouri; Joe Howard, New Mezico Highlands University, Las Vegas, New Mexico;
Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; and
the proposer.

The triangular numbers, {7,,}52 ;, have the form T,, = n(n+1)/2. The partial
sum, So,, of the first 2n terms of the series is

n—1
2 2
Sop =2 —1)k,
- +kz_0{(2k+1)(2k+2) * @y Y

In this replace

N S S S

Qk+1)(2k+2) ° 2%+1 2k+2
and

1 . 11

2k +2)(2k+3) ° 2%+2 2%k+3

We obtain

n—1
1 1
Spp=2+23" -1~ L )k
on =2 kZ_O[Zk—i-l g3 Y
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If the summation is written out, all terms are doubled except those for £ = 0 and
k =n — 1. This gives

n—1

1 2(—1)"
=4y —(—1)k .
T

The indicated summation is a partial sum of the Leibniz-Gregory series for tan=' 1.
Hence,

= 1 T
lim Spp =4y —— (-1 =4(2) =7
Jim San =40 =g (21 (5)=-

Solution II by Carl Libis, University of Alabama, Tuscaloosa, Alabama.
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Let z = 1/4 in the formula

1 & 2z
7TCOt7TZ:—+ —_ .

We obtain
100
N 52 (1/4)2 —n2
=4 80071
=4 ;1—16712
> 1 1
=4+4
=41
(e S )
=1 =1
:4_ —
(Cmm - ars)
Therefore,
3+ 1 1+
17376 10 -7

Solution III by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

We begin by establishing the following preliminary result.

Lemma.

1 1 1 1 1
1+ f 4 — ... —Y
HEREAURTRE +n(n+1)/2+(n+1)(n+2)/2+
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Proof.
UL P ! +
3 6 10 nn+1)/2  (n+1)(n+2)/2
W CET F SR AR — -
 n—oo 3 6 1 nn+1)/2  (n+1)(n+2)/2

|
3

pe(38)+G-3)- G-+ (-

converges absolutely.

Recalling that

it follows that

11+11++1 1+_17r
3 5 79 dn—1 4dn+1 o 4’
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Thus,

RS NS S A WA T A WS TS S (6 SR I WY A TS O
-3 \6 3 10 5) 715 21" \28 14 36 18

—1+1+1+1+1+1+1+1+
T 376 10 15 21 28 36

2 2
ﬁ+77)+'”+(4n_1)(4n+1)+'”)

(
ER(GONCHERCERDE
(

Therefore,
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106. [1997, 105] Proposed by Mohammad K. Azarian, University of Fvansville,
FEvansville, Indiana.

Show that

N =

“ (n 1 2ntl 1
Z <m) n—m+Dm+1) (n+2)(n+1)

m=0

Solution I by Joseph B. Dence, University of Missouri-St. Louis, St. Louis,
Missouri and Carl Libis, University of Alabama, Tuscaloosa, Alabama.

(n> _nn-1)-(n-m+1)

m! ’

SO

<:@> (n—m —l—ll)(m T (n+ 1)1(n +2) (:1:21)

Hence,

%z": (Z) (n—m+11)(m+1) B (n+11)/(?1+2) z”: <:z44;21>

m=0 m=0

e (1)

m=1

e () - () - ()
s iC)
DAL |

S (n+D)(n+2)
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Solution II by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wis-

consin.

We begin by establishing the following preliminary result.

Lemma.
1 n+1Y\ 1 n
n+1l\m+1) m+1\m/)’
Proof.
I (n+1Y) 1 (n+1)!
n+1\m+1) n+1 (m+D((n+1)—(m+1))!
1 n! 1 n
S m+1 mln—m)! m+1\m/)
Corollary.
1 n 1
- — 2n+1_1
mz_:om—i-1<m) n—i—l( )
Proof.
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Thus,

> (Z) (n— m+11><m+ D)
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Solution III by Russell Euler and Jawad Sadek, Northwest Missouri State Uni-
versity, Maryville, Missouri and Kenneth Davenport, P. O. Box 99901, Pittsburg,
Pennsylvania.

First notice that

i( >n—m+11)(m+1 n+2zn:< )[n_:nJrleril- (1)

m=0 m=0

Integrating the identity

zn:< ) =1+az2)"

m=0

from 0 to 1 gives

> ()= e g

m=0
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Similarly, since

- 1 ont+l _q
> (m - - 3)
m/n—m-+1 n—+1

1< (n 1 ontl
52 <m) m—m+D)m+1) m+2)n+l)

Solution IV by Joe Howard, New Mexico Highlands University, Las Vegas, New
Mezico.

The Binomial Series is

n
m=0

(D)o o v

Integrating with respect to dz and dy gives

" 1 1 1,1
Z < ) / xmd:c/ y" T Mdy = / / (x + y)"dzdy.
m/ Jo 0 0o Jo

m=0

Therefore,

" /n 1 _ 1 [yt oyt gni2 g
Z(m)(m—i—l)(n—m—i—l)_n—i-l[ n+2 L_(n—I—Z)(n—l-l)'

m=0
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Solution V by the proposer.

First we note that if

T x? x3 "
f(fC)=a0+a1ﬁ+a25+a3§+---+anm+---
and
2 3 n

xz X x xZ
9(@) = bo+ bi g +bagr b b

then the coefficient of z™/n! in the product f(x)g(z) is

Now, if

=l4 ottt

is
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On the other hand,

Fgle) = E = e _aem 4

() (5 () e (e

Thus, the coefficient of 2™ /n! in f(x)g(x) using equation (2) is

2nt2 9
(n+2)(n+1)

Consequently, from (1) and (3) we obtain the desired equality.
107. [1997, 106] Proposed by Leonard L. Palmer, Southeast Missouri State
University, Cape Girardeau, Missoursi.

Prove, if p = 8k + 3 is a prime for £ > 1 and
a>+(p—2)*=0 (mod p),
then ¢ =0 (mod p) and b =0 (mod p).

Solution I by James T. Bruening, Southeast Missouri State University, Cape
Girardeau, Missouri and Kandasamy Muthuvel, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin.

The congruence,
a>+(p—2)*=0 (mod p),
can be rewritten as
a’® +pb* =20 =0 (mod p),

or
a®> =2b* (mod p).

Assume p /b, and let 7 be a quadratic residue modulo p such that b2 = r (mod p).
Then (r/p) = 1, where (z/p) denotes the Legendre symbol. a? = 2b*> (mod p)
implies a? = 2r (mod p), so that (2r/p) = 1. But

(2r/p) = 2/p)(r/p) = (=1)- (1) = -1,
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since p = £3 (mod 8) implies (2/p) = —1. (See [1], Section 9.2, pp. 180-187.)

Since (2r/p) cannot equal both 1 and -1, this is a contradiction, so the assump-
tion, p /b, is false. Thus p|b, and b = 0 (mod p). a? = 2b* (mod p) implies a? =
(mod p), so that a =0 (mod p), since p is prime. This completes the proof.

Reference

1. D. M. Burton, Elementary Number Theory, 3rd ed., McGraw-Hill, New York,
1997.

Solution II by the proposer. Let p = 8k + 3. Because 1 = (8k + 1)(4k + 1) +
(8k + 3)(—4k) we have (4k+1)(8k+1) =1 (mod p). Using Legendre symbols and
(4k + 1)? = (2k + 1) + 2k(8k + 3) we have

2k + 1 .
8k+3/)

and

(;Ul:iiz’») - (8k2+3) (2:1;) = (-1)(1) = —1.

Suppose a? + (p —2)b> =0 (mod p) and a #Z 0 (mod p). There exists a ¢ such that
ac=1 (mod p) so (ac)? + (p—2)(bc)?> = 0 (mod p). Therefore, (8k + 1)(bc)? = —
(mod p) and (4k+1)(8k+1)(bc)? = —(4k+1) = 4k+2 (mod p). But (be)? = 4k+2
(mod p) is a contradiction because

4k +2Y\ )
8k+3/)

So a =0 (mod p) and b*> = 0 (mod p), which implies b =0 (mod p).
Similarly, let p = 8k + 3. We have 1 = (8k — 5)(4k — 2) + (8k — 3)(—4k + 3)
implying (4k —2)(8k —5) = 1 (mod p). Also (4k — 1)? = (=2k + 1) + 2k(8k — 3)

which gives
—2k+1Y\ ]
8k—3 )
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and
—4k+2 2 —2k+1
( 8k —3 ) - (8k—3)( 8k —3 ) = (D) =-1.
As in the preceding case there is a ¢ such that (p — 2)(bc)?> = —1 (mod p) or
(8k —5)(bc)? = —1 (mod (8k — 3)). We have (4k — 2)(8k — 5)(bc)? = —(4k — 2) =

—4k+2 (mod p) so (bc)? = —4k+2 (mod p). Again this is a contradiction so a = 0
(mod p) and b =0 (mod p).

108. [1997, 106] Proposed by Joseph B. Dence, University of Missouri-St.
Louis, St. Louis, Missouri.

A positive integer d is called a unitary divisor of a positive integer n, written
d||n, if d and n/d are relatively prime. We define two unitary arithmetic functions
by analogy to their standard counterparts:

A unitary Mobius function p*(n):

Z *(d){L forn=1;
K 1o, forn>1.

dl|n

A unitary Euler phi-function ¢*(n):

6" (n) = > 1 (d).

d||n

When n > 2, ¢(n) is always even; this is not true of ¢*(n). Determine how many
known odd primes are in the range of the function ¢*(n).

Solution by the proposer. It is straightforward to show that p*(n) is multiplica-
tive: n = myma, (m1,mz) = 1 implies p*(n) = p*(m1)p*(me), and from this fact
that ¢*(n) is also multiplicative. Next we note that if p is an odd prime and k > 1,
then

*( k\ % pk * kpk_ k
¢(p)—u(1)—+u(p)1;—p -1,

so if n contains one or more odd primes in its factorization, ¢*(n) is even. Hence,
#*(n) can only be an odd prime if n = 2¥, in which case ¢*(2*) = 2¥ — 1. Primes
of this form are the Mersenne primes (e.g., 3, 7, 31, 127, ... ); at present, there are
approximately three dozen known Mersenne primes.



