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FINDING PYTHAGOREAN TRIPLE

PRESERVING MATRICES

Leonard Palmer, Mangho Ahuja, and Mohan Tikoo

1. Introduction. When we multiply a Pythagorean triple with a 3 × 3

matrix we obtain another triple, but will it be Pythagorean? A problem posed in

1987 showed an example of a 3× 3 matrix

A =





2 1 2
1 2 2
2 2 3





which converts a Pythagorean triple into a Pythagorean triple [1]. For example

(3, 4, 5)A = (20, 21, 29), which is again a Pythagorean triple. Indeed one can verify

that if (a, b, c)A = (d, e, f) and a2 + b2 = c2, then d2 + e2 = f2. In other words the

matrix A “preserves” Pythagorean triples.

In this paper we will find matrices which “preserve” Pythagorean triples. To

be specific, we will find necessary and sufficient conditions that a 3 × 3 matrix

preserves Pythagorean triples. In the second paper we will discuss construction of

matrices which play a prescribed role, i.e. given two Pythagorean triples, say X

and Y , we construct a matrix A such that XA = Y .

2. Preliminary Definitions. We define a Pythagorean Triple (PT) as a

triple (a, b, c) where a, b, and c are positive integers and c2 = a2+b2. If in addition,

a, b, and c have no factor in common, the triple is called a Primitive Pythagorean

Triple (PPT). By our definition both (3, 4, 5) and (4, 3, 5) are PPTs. To keep our

analysis simple, it is necessary to distinguish between these two types. We will say

(3, 4, 5) is of type A and (4, 3, 5) is of type B, i.e., a PPT (a, b, c) is of type A or

type B according as a or b is an odd integer. Furthermore, we will denote them by

PPTA and PPTB, respectively. A matrix that converts a PPT (of type A or B)

into a PPT (of type A or B) will be called a Pythagorean Triple Preserving Matrix

and will be denoted by PTPM. We note that the matrix A shown above converts

a PPTA into a PPTB. The object of this paper is to find all PTPMs.
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A long time ago, the Indian mathematician Brahmagupta (598-c665 AD) gave

us the formula generating all PPTs. A triple (a, b, c) is a PPT if and only if (a, b, c) =

(m2−n2, 2mn,m2+n2). The algebraic identity (m2−n2)2+(2mn)2 = (m2+n2)2

shows that the triple satisfies the Pythagorean formula for every value of m and

n. However, for (a, b, c) to be a PPT (see definition above), m and n must satisfy

further conditions. These are listed as I-1 to I-4 below.

I-1. m and n are positive integers,

I-2. m > n,

I-3. gcd(m,n) = 1, and

I-4. m+ n ≡ 1 (mod 2).

For more details refer to [2, 3].

3. An Algebraic Identity. The centerpiece of our discussion is the following

identity, presented here as a lemma.

Lemma 1. Let r, s, t, u, m, n, M , and N be any real or complex numbers.

Let

H =





((r2 − t2)− (s2 − u2))/2 rs− tu ((r2 − t2) + (s2 − u2))/2
rt − su ru + st rt + su

((r2 + t2)− (s2 + u2))/2 rs+ tu ((r2 + t2) + (s2 + u2))/2



 .

Then

(m2 − n2, 2mn,m2 + n2)H = (M2 −N2, 2MN,M2 +N2) (i)

where M = mr + nt and N = ms+ nu.

The proof of this identity is long and tedious but it is fairly routine and is

therefore left to the reader. However, a few comments about this lemma are nec-

essary. First, we note that equation (i) is an algebraic identity and no specific

conditions on the nature of m and n or r, s, t, and u are imposed. Secondly, it

shows that the matrix H converts a triple (m2 − n2, 2mn,m2 + n2) into a triple

(M2−N2, 2MN,M2+N2). Lastly, the equations M = mr+nt, and N = ms+nu

can be conveniently expressed as a matrix equation

(m,n)

(

r s
t u

)

= (M,N). (ii)



VOLUME 10, NUMBER 2, SPRING 1998 101

We know that the triple (m2−n2, 2mn,m2+n2) satisfies the Pythagorean formula,

but is not a PPT (according to our definition) unless the pair (m,n) satisfies the

conditions listed in I-1 to I-4 above. When this triple is multiplied by the matrix

H , we obtain another triple (M2 − N2, 2MN,M2 + N2). Even if the pair (m,n)

satisfies the conditions I-1 to I-4, the pair (M,N) may not, and hence will not

be a PPT, unless suitable conditions on r, s, t, and u are imposed. Each of the

conditions I-1 to I-4 on m and n will in turn impose restrictions on the variables r,

s, t, and u. Discussion of this topic follows.

4. Finding Necessary Conditions on r, s, t, and u so that H is a

PTPM. From equation (ii) we have

(m,n)

(

r s
t u

)

= (M,N),

i.e., M = mr + nt and N = ms+ nu.

Condition I-1 requires that M and N are positive integers. We know that m

and n are positive integers. Thus, M and N will be positive integers if r and s are

positive integers and |t| ≤ r and |u| ≤ s.

Condition I-2 requires that M > N . Again, M = mr + nt, N = ms+ nu, and

m > n. To obtain M > N , we need mr + nt > ms + nu or m(r − s) > n(u − t),

i.e., we must have r − s ≥ u − t > 0. Adding s + t to both sides of the inequality,

we have r + t ≥ s+ u ≥ 0.

Condition I-3 requires that gcd(M,N) = 1. The authors posed this as a

problem in the College Mathematics Journal [4].

Problem. Given

(m,n)

(

r s
t u

)

= (M,N),

find the necessary and sufficient conditions such that gcd(M,N) = 1, whenever

gcd(m,n) = 1.

The solution is that

∆ = det

(

r s
t u

)

= ±1.
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However, if (m,n) satisfies the conditions listed in I-1 to I-4, the condition ∆ = ±1

is not necessary. For example consider the matrix

(

2 1
0 1

)

.

It is not difficult to verify that if (m,n) satisfies I-1 to I-4, and

(m,n)

(

2 1
0 1

)

= (M,N),

then gcd(M,N) = 1. Yet the matrix shown has determinant 2. Thus, the condition

∆ = ±1 is a sufficient condition, but by no means a necessary condition if the pair

(m,n) satisfies conditions I-1 to I-4.

Condition I-4 requires that M + N ≡ 1 (mod 2). Now M + N = mr + nt +

ms+nu = m(r+s)+n(t+u). If both r+s and t+u satisfy the conditions r+s ≡ 1

(mod 2) and t+ u ≡ 1 (mod 2), then M +N = m+ n ≡ 1 (mod 2).

We may summarize as follows. If the pair (m,n) satisfies the conditions I-1 to

I-4 and

(m,n)

(

r s
t u

)

= (M,N),

then the pair (M,N) will also satisfy the conditions I-1 to I-4 if the following four

conditions are satisfied.

R-1. r, s, t, and u are integers, where r and s are positive, but t and u can be

negative so long as r + t ≥ 0 and s+ u ≥ 0

R-2. r + t ≥ s+ u ≥ 0

R-3. ∆ = ru − st = ±1

R-4. r + s ≡ 1 (mod 2) and t+ u ≡ 1 (mod 2).

If the pair (m,n) satisfies I-1 to I-4 and r, s, t, and u satisfy R-1 to R-4, then

the pair (M,N) obtained from the equation

(m,n)

(

r s
t u

)

= (M,N)
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will also satisfy I-1 to I-4. Consequently, the triple (M2−N2, 2MN,M2+N2) will

be a PPT and the 3× 3 matrix H will be a PTPM.

5. Converse. We now consider the converse statement that every PTPMmust

be of type H . We will show that if A is a 3×3 matrix and A converts a Pythagorean

triple (m2−n2, 2mn,m2+n2) into a Pythagorean triple (M2−N2, 2MN,M2+N2),

then A must be of the form H for some values of r, s, t, and u.

Proof of the converse. Let

A =





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3





and let us assume that A converts a Pythagorean triple into a Pythagorean triple,

i.e.,

(m2 − n2, 2mn,m2 + n2)





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3



 = (M2 −N2, 2MN,M2 +N2).

Then

M2 −N2 = (m2 − n2)α1 + (2mn)β1 + (m2 + n2)γ1 (iii)

2MN = (m2 − n2)α2 + (2mn)β2 + (m2 + n2)γ2 (iv)

M2 +N2 = (m2 − n2)α3 + (2mn)β3 + (m2 + n2)γ3. (v)

Solving for M2 and N2 we get,

(vi)

M2 = m2

(

α1 + α3 + γ1 + γ3
2

)

+mn(β1 + β3) + n2

(

γ1 + γ3 − (α1 + α3)

2

)

(vii)

N2 = m2

(

α3 − α1 + γ3 − γ1
2

)

+mn(β3 − β1) + n2

(

γ3 − γ1 − (α3 − α1)

2

)

.
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Let

r2 =

(

α1 + α3 + γ1 + γ3
2

)

, s2 =

(

α3 − α1 + γ3 − γ1
2

)

,

t2 =

(

γ1 + γ3 − (α1 + α3)

2

)

, and u2 =

(

γ3 − γ1 − (α3 − α1)

2

)

.

Since the expressions on the right side of the equations (vi) and (vii) are perfect

squares, the quantities r2, s2, t2, and u2 are all positive. We now have M2 =

m2r2 +mn(β1 + β3) + n2t2 and N2 = m2s2 +mn(β3 − β1) + n2u2. Since the right

side of the above two equations is a perfect square, for every choice of the pair

(m,n) we have (β1 + β3)
2 = 4r2t2 and (β3 − β1)

2 = 4s2u2. We will choose the

signs of r, s, t, and u as follows. Let r and s be positive, but t will have the same

sign as β1 + β3, and u will have the same sign as β3 − β1. Then β1 + β3 = 2rt

and β3 − β1 = 2su, that is β1 = rt − su, and β3 = rt + su. Also, it follows that

M2 = m2r2 + 2mnrt+ n2t2, i.e., M = mr + nt and N2 = m2s2 + 2mnsu+ n2u2,

i.e., N = ms+ nu.

Multiplying these values ofM and N we get MN = m2rs+mn(ru+st)+n2tu.

On comparing this with the value of MN from equation (iv), we get α2+γ2 = 2rs,

γ2−α2 = 2tu, and β2 = ru+st. This yields γ2 = rs+ tu and α2 = rs− tu. Now we

will solve for the remaining elements of the matrix A. We have γ1 + γ3 = r2 + t2,

γ3 − γ1 = s2 + u2, α1 + α3 = r2 − t2, and α3 − α1 = s2 − u2. From these equations

we get

α1 =
(r2 − t2)− (s2 − u2)

2
, α3 =

(r2 − t2) + (s2 − u2)

2
,

γ1 =
(r2 + t2)− (s2 + u2)

2
, and γ3 =

(r2 + t2) + (s2 + u2)

2
.

Putting it all together, the matrix A is given by

A =





((r2 − t2)− (s2 − u2))/2 rs− tu ((r2 − t2) + (s2 − u2))/2
rt− su ru+ st rt+ su

((r2 + t2)− (s2 + u2))/2 rs+ tu ((r2 + t2) + (s2 + u2))/2



 .



VOLUME 10, NUMBER 2, SPRING 1998 105

This concludes the proof.

The statement and the converse together give the following theorem.

Theorem 1. A 3× 3 matrix is a PTPM if and only if it is of the type H .

6. Conclusion. In this paper we have shown that all matrices which are

PTPMs, i.e., preserve Pythagorean triples, must have the form H . Under the

conditions listed in R-1 to R-4, the matrix H will convert a Pythagorean triple of

type A into a Pythagorean triple of type A. These conditions are not necessary

but are sufficient. In the second paper we will show how to construct Pythagorean

Triple Preserving Matrices (PTPMs). We will also show how one can design a

matrix which is not only a PTPM but converts a given PPT into another given

PPT.
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