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MONOIDS CONNECTED WITH EULER’S
DIOPHANTINE EQUATION

Aleksander Grytczuk

Abstract. In this paper we give a construction of infinite monoids generated
by the integer solutions of Euler’s Diophantine equation z? + y* = 2", n > 2.

1. Introduction. It is well-known, by the classical result of Euler, that the
Diophantine equation
2yt =2" n>2 (1)

has infinitely many solutions in integers z, y, and z for any fixed positive integer
n > 2. Moreover, all integer solutions of (1) in integers z, y, and z such that
(z,y) = 1 are given by the following formula:

i

where r and s are integers such that (r,s) = 1.

Let
Sn={{x,y,2) € 2% 2 +y* =2"; n>2}. (3)

[Pl

Define the operation “o” on S, as follows.
If a« = (a,b,c) € S, and § = (u,v,w) € Sy, then

aof={a,b,c)o (u,v,w) = {au — bv, av + bu, cw) = ~. (4)
The following identity
(au — bv)? + (av + bu)? = (a® + b?)(u? + v?) (5)
is well-known. Since «, 5 € S,,, then by (3) it follows that
A +0% =", w40 =w". (6)
From (5) and (6), we obtain

(au — bv)? + (av + bu)? = (cw)™. (7)



92 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Now, by (7), it follows that the element v = (au — bv,av + bu, cw) belongs to
Sn. We prove that the set (Sp;o), where the operation “o” is define by (4) is a
commutative monoid for any fixed positive integer n > 2. We note that in the
case n = 2, the equation (1) reduces to the Pythagorean equation. In this case, B.
Dawson [1] gave a construction of a Pythagorean ring. He defined two operations
and an isomorphism ®: P — Z x Z, where P = {(x,y, z) € Z3; 2> + y* = 2%} and
utilizing the elements of the set P, = {(x,y,2) € P; z —y = n}. Moreover, in [2],
it was proven that the set P,, with respect to the particular operations “®” and

“o” is a commutative ring for any fixed integer n.

2. Results. We begin by proving the following theorem.

Theorem 1. The set (Sy; o), where the operation “o” is defined by (4) and S,
by (3), is a commutative monoid, for any positive integer n > 2.

Proof. Let o = {a,b,c) € Sy, B = (u,v,w) € S,, and v = (d,e, f) € S,. Then
by (4), it follows that

L=(aop)oy=({a,b,c)o (u,v,w))o{d,e,f)
= (au — bv, av + bu, cw) o (d, e, f).

Putting a; = au — bv, by = av + bu, and ¢; = cw in the last equality and using (4),
we obtain

L= {a1,b1,c1)0{d,e, f) = (a1d — bie,are + bid, c1 ).

In a similar way, we obtain

P=ao(Bo7y)=/{a,b,c)o({u,v,w)o(d,e, f))
= (a, b, c) o (ud — ve,ue + vd, wf).

Let w1 = ud — ve, v1 = ue + vd, and wy = wf. Then by (4) and the last equality,
it follows that

P ={a,b,c) o (u1,v1,wr) = (auy — bvy, avy + buy, cwy).
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Moreover, it is easy to see that

cwy =cwf =c1f (8)
ard — bre = (au — bv)d — (av + bu)e = a(ud — ve) — b(ue + vd) = avy + buy  (9)
are + bid = (au — bv)e + (av + bu)d = a(ue + vd) + b(ud — ve) = avy + buy. (10)

From (8)—(10), it follows that L = P and the associative law is satisfied. On the
other hand, we have

aof = {a,b,c)o {u,v,wy = {au —bv,av + bu,cw) = fo«

and so the commutative law is satisfied. Finally, we remark that the element
e =(1,0,1) € S,, and for every o € S,, we have, by (4), that toe =eoa = ¢;
therefore, the element e = (1,0, 1) is the identity element in the set S,,, and the
proof of Theorem 1 is complete.

Remark. The set (S,;0) is not a group, because « has an inverse in 5, if and
only if a = (£1,0,£1) or (0,+1,£+1).
Now, we introduce a special set of matrices:

MQ(")(Z) = {A— ( ab 2); det A=c"; n>2; a,b,ceZ}. (%)

We prove the following.

Theorem 2. Let Mén)(Z) be the set of all integral matrices defined by (*) with
the operation of matrix multiplication, denoted by “”. Then the set (S,;0) is
isomorphic to the set <M2") (Z),-).

Proof. Let ®:5, — MQ(n)(Z) be the mapping defined as follows. If a =
{(a,b,c) € Sy, then

®(a) = (_“b 2) =A; det A=c" n>2. (11)

First, we remark that the mapping ® is bijective. Further, for o = (a,b,c) € S,
and 8 = (u,v,w) € S, we have

O(ao ) =P({a,b,c)o{u,v,w)) = P({au — bv, av + bu, cw)).
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From the last equality and (11), we obtain

au — bv av + bu n
P(aof) = (—(av+bu) du — bv) =C, det C = (cw)" = (au—bv)?+ (av+bu)?.

On the other hand, by (11), it follows that

By (12) and (13), it follows that

s 2@ =48= (1 1) (4 1) = (L aiie)- a9

For (14) and Cauchy’s theorem on the product of determinants, we obtain
det(A- B) = det A-det B = (a® + b*)(u* + v?) = (au — bv)* + (av + bu)?.  (15)

By (12), (13), and (15), it follows that (cw)™ = (au —bv)? + (av + bu)? = det C' and
consequently, we obtain ®(a o 8) = ®(a) - (), hence, S, =~ MQ(") (Z). The proof
of Theorem 2 is complete.
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