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MONOIDS CONNECTED WITH EULER’S

DIOPHANTINE EQUATION

Aleksander Grytczuk

Abstract. In this paper we give a construction of infinite monoids generated

by the integer solutions of Euler’s Diophantine equation x2 + y2 = zn, n ≥ 2.

1. Introduction. It is well-known, by the classical result of Euler, that the

Diophantine equation

x2 + y2 = zn, n ≥ 2 (1)

has infinitely many solutions in integers x, y, and z for any fixed positive integer

n ≥ 2. Moreover, all integer solutions of (1) in integers x, y, and z such that

(x, y) = 1 are given by the following formula:

x =
(r + is)n + (r − is)n

2
, y =

(r + is)n − (r − is)n

2i
, z = r2 + s2, (2)

where r and s are integers such that (r, s) = 1.

Let

Sn = {〈x, y, z〉 ∈ Z
3; x2 + y2 = zn; n ≥ 2}. (3)

Define the operation “◦” on Sn as follows.

If α = 〈a, b, c〉 ∈ Sn and β = 〈u, v, w〉 ∈ Sn, then

α ◦ β = 〈a, b, c〉 ◦ 〈u, v, w〉 = 〈au− bv, av + bu, cw〉 = γ. (4)

The following identity

(au− bv)2 + (av + bu)2 = (a2 + b2)(u2 + v2) (5)

is well-known. Since α, β ∈ Sn, then by (3) it follows that

a2 + b2 = cn, u2 + v2 = wn. (6)

From (5) and (6), we obtain

(au− bv)2 + (av + bu)2 = (cw)n. (7)
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Now, by (7), it follows that the element γ = 〈au − bv, av + bu, cw〉 belongs to

Sn. We prove that the set 〈Sn; ◦〉, where the operation “◦” is define by (4) is a

commutative monoid for any fixed positive integer n ≥ 2. We note that in the

case n = 2, the equation (1) reduces to the Pythagorean equation. In this case, B.

Dawson [1] gave a construction of a Pythagorean ring. He defined two operations

and an isomorphism Φ:P → Z× Z, where P = {〈x, y, z〉 ∈ Z
3; x2 + y2 = z2} and

utilizing the elements of the set Pn = {〈x, y, z〉 ∈ P ; z − y = n}. Moreover, in [2],

it was proven that the set Pn, with respect to the particular operations “⊕” and

“◦” is a commutative ring for any fixed integer n.

2. Results. We begin by proving the following theorem.

Theorem 1. The set 〈Sn; ◦〉, where the operation “◦” is defined by (4) and Sn

by (3), is a commutative monoid, for any positive integer n ≥ 2.

Proof. Let α = 〈a, b, c〉 ∈ Sn, β = 〈u, v, w〉 ∈ Sn, and γ = 〈d, e, f〉 ∈ Sn. Then

by (4), it follows that

L = (α ◦ β) ◦ γ = (〈a, b, c〉 ◦ 〈u, v, w〉) ◦ 〈d, e, f〉

= 〈au− bv, av + bu, cw〉 ◦ 〈d, e, f〉.

Putting a1 = au− bv, b1 = av+ bu, and c1 = cw in the last equality and using (4),

we obtain

L = 〈a1, b1, c1〉 ◦ 〈d, e, f〉 = 〈a1d− b1e, a1e + b1d, c1f〉.

In a similar way, we obtain

P = α ◦ (β ◦ γ) = 〈a, b, c〉 ◦ (〈u, v, w〉 ◦ 〈d, e, f〉)

= 〈a, b, c〉 ◦ 〈ud− ve, ue+ vd, wf〉.

Let u1 = ud− ve, v1 = ue+ vd, and w1 = wf . Then by (4) and the last equality,

it follows that

P = 〈a, b, c〉 ◦ 〈u1, v1, w1〉 = 〈au1 − bv1, av1 + bu1, cw1〉.
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Moreover, it is easy to see that

cw1 = cwf = c1f (8)

a1d− b1e = (au− bv)d− (av + bu)e = a(ud− ve)− b(ue+ vd) = av1 + bu1 (9)

a1e+ b1d = (au− bv)e+ (av + bu)d = a(ue+ vd) + b(ud− ve) = av1 + bu1. (10)

From (8)–(10), it follows that L = P and the associative law is satisfied. On the

other hand, we have

α ◦ β = 〈a, b, c〉 ◦ 〈u, v, w〉 = 〈au− bv, av + bu, cw〉 = β ◦ α

and so the commutative law is satisfied. Finally, we remark that the element

e = 〈1, 0, 1〉 ∈ Sn and for every α ∈ Sn we have, by (4), that α ◦ e = e ◦ α = α;

therefore, the element e = 〈1, 0, 1〉 is the identity element in the set Sn, and the

proof of Theorem 1 is complete.

Remark. The set 〈Sn; ◦〉 is not a group, because α has an inverse in Sn if and

only if α = 〈±1, 0,±1〉 or 〈0,±1,±1〉.

Now, we introduce a special set of matrices:

M
(n)
2 (Z) =

{

A =

(

a b

−b a

)

; detA = cn; n ≥ 2; a, b, c ∈ Z

}

. (∗)

We prove the following.

Theorem 2. Let M
(n)
2 (Z) be the set of all integral matrices defined by (∗) with

the operation of matrix multiplication, denoted by “·”. Then the set 〈Sn; ◦〉 is

isomorphic to the set 〈M
(n)
2 (Z), ·〉.

Proof. Let Φ:Sn → M
(n)
2 (Z) be the mapping defined as follows. If α =

〈a, b, c〉 ∈ Sn, then

Φ(α) =

(

a b

−b a

)

= A; detA = cn; n ≥ 2. (11)

First, we remark that the mapping Φ is bijective. Further, for α = 〈a, b, c〉 ∈ Sn

and β = 〈u, v, w〉 ∈ Sn, we have

Φ(α ◦ β) = Φ(〈a, b, c〉 ◦ 〈u, v, w〉) = Φ(〈au − bv, av + bu, cw〉).
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From the last equality and (11), we obtain

Φ(α◦β) =

(

au− bv av + bu

−(av + bu) au− bv

)

= C, detC = (cw)n = (au− bv)2+(av+ bu)2.

On the other hand, by (11), it follows that

Φ(α) = Φ(〈a, b, c〉) = A =

(

a b

−b a

)

, detA = a2 + b2 = cn (12)

Φ(β) = Φ(〈u, v, w〉) = B =

(

u v

−v u

)

, detB = u2 + v2 = wn. (13)

By (12) and (13), it follows that

Φ(α) · Φ(β) = A · B =

(

a b

−b a

)

·

(

u v

−v u

)

=

(

au− bv av + bu

−(av + bu) au− bv

)

. (14)

For (14) and Cauchy’s theorem on the product of determinants, we obtain

det(A ·B) = detA · detB = (a2 + b2)(u2 + v2) = (au− bv)2 + (av + bu)2. (15)

By (12), (13), and (15), it follows that (cw)n = (au− bv)2+(av+ bu)2 = detC and

consequently, we obtain Φ(α ◦ β) = Φ(α) · Φ(β), hence, Sn ≈ M
(n)
2 (Z). The proof

of Theorem 2 is complete.
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