MONOIDS CONNECTED WITH EULER'S DIOPHANTINE EQUATION

Aleksander Grytczuk

Abstract. In this paper we give a construction of infinite monoids generated by the integer solutions of Euler's Diophantine equation $x^{2}+y^{2}=z^{n}, n \geq 2$.

1. Introduction. It is well-known, by the classical result of Euler, that the Diophantine equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{n}, \quad n \geq 2 \tag{1}
\end{equation*}
$$

has infinitely many solutions in integers x, y, and z for any fixed positive integer $n \geq 2$. Moreover, all integer solutions of (1) in integers x, y, and z such that $(x, y)=1$ are given by the following formula:

$$
\begin{equation*}
x=\frac{(r+i s)^{n}+(r-i s)^{n}}{2}, \quad y=\frac{(r+i s)^{n}-(r-i s)^{n}}{2 i}, \quad z=r^{2}+s^{2} \tag{2}
\end{equation*}
$$

where r and s are integers such that $(r, s)=1$.
Let

$$
\begin{equation*}
S_{n}=\left\{\langle x, y, z\rangle \in \mathbb{Z}^{3} ; \quad x^{2}+y^{2}=z^{n} ; \quad n \geq 2\right\} \tag{3}
\end{equation*}
$$

Define the operation "○" on S_{n} as follows.
If $\alpha=\langle a, b, c\rangle \in S_{n}$ and $\beta=\langle u, v, w\rangle \in S_{n}$, then

$$
\begin{equation*}
\alpha \circ \beta=\langle a, b, c\rangle \circ\langle u, v, w\rangle=\langle a u-b v, a v+b u, c w\rangle=\gamma \tag{4}
\end{equation*}
$$

The following identity

$$
\begin{equation*}
(a u-b v)^{2}+(a v+b u)^{2}=\left(a^{2}+b^{2}\right)\left(u^{2}+v^{2}\right) \tag{5}
\end{equation*}
$$

is well-known. Since $\alpha, \beta \in S_{n}$, then by (3) it follows that

$$
\begin{equation*}
a^{2}+b^{2}=c^{n}, \quad u^{2}+v^{2}=w^{n} \tag{6}
\end{equation*}
$$

From (5) and (6), we obtain

$$
\begin{equation*}
(a u-b v)^{2}+(a v+b u)^{2}=(c w)^{n} \tag{7}
\end{equation*}
$$

Now, by (7), it follows that the element $\gamma=\langle a u-b v, a v+b u, c w\rangle$ belongs to S_{n}. We prove that the set $\left\langle S_{n} ; \circ\right\rangle$, where the operation "०" is define by (4) is a commutative monoid for any fixed positive integer $n \geq 2$. We note that in the case $n=2$, the equation (1) reduces to the Pythagorean equation. In this case, B. Dawson [1] gave a construction of a Pythagorean ring. He defined two operations and an isomorphism $\Phi: P \rightarrow \mathbb{Z} \times \mathbb{Z}$, where $P=\left\{\langle x, y, z\rangle \in \mathbb{Z}^{3} ; x^{2}+y^{2}=z^{2}\right\}$ and utilizing the elements of the set $P_{n}=\{\langle x, y, z\rangle \in P ; z-y=n\}$. Moreover, in [2], it was proven that the set P_{n}, with respect to the particular operations " \oplus " and "०" is a commutative ring for any fixed integer n.
2. Results. We begin by proving the following theorem.

Theorem 1. The set $\left\langle S_{n} ; \circ\right\rangle$, where the operation "०" is defined by (4) and S_{n} by (3), is a commutative monoid, for any positive integer $n \geq 2$.

Proof. Let $\alpha=\langle a, b, c\rangle \in S_{n}, \beta=\langle u, v, w\rangle \in S_{n}$, and $\gamma=\langle d, e, f\rangle \in S_{n}$. Then by (4), it follows that

$$
\begin{aligned}
L & =(\alpha \circ \beta) \circ \gamma=(\langle a, b, c\rangle \circ\langle u, v, w\rangle) \circ\langle d, e, f\rangle \\
& =\langle a u-b v, a v+b u, c w\rangle \circ\langle d, e, f\rangle .
\end{aligned}
$$

Putting $a_{1}=a u-b v, b_{1}=a v+b u$, and $c_{1}=c w$ in the last equality and using (4), we obtain

$$
L=\left\langle a_{1}, b_{1}, c_{1}\right\rangle \circ\langle d, e, f\rangle=\left\langle a_{1} d-b_{1} e, a_{1} e+b_{1} d, c_{1} f\right\rangle
$$

In a similar way, we obtain

$$
\begin{aligned}
P & =\alpha \circ(\beta \circ \gamma)=\langle a, b, c\rangle \circ(\langle u, v, w\rangle \circ\langle d, e, f\rangle) \\
& =\langle a, b, c\rangle \circ\langle u d-v e, u e+v d, w f\rangle .
\end{aligned}
$$

Let $u_{1}=u d-v e, v_{1}=u e+v d$, and $w_{1}=w f$. Then by (4) and the last equality, it follows that

$$
P=\langle a, b, c\rangle \circ\left\langle u_{1}, v_{1}, w_{1}\right\rangle=\left\langle a u_{1}-b v_{1}, a v_{1}+b u_{1}, c w_{1}\right\rangle .
$$

Moreover, it is easy to see that

$$
\begin{align*}
& c w_{1}=c w f=c_{1} f \tag{8}\\
& a_{1} d-b_{1} e=(a u-b v) d-(a v+b u) e=a(u d-v e)-b(u e+v d)=a v_{1}+b u_{1} \tag{9}\\
& a_{1} e+b_{1} d=(a u-b v) e+(a v+b u) d=a(u e+v d)+b(u d-v e)=a v_{1}+b u_{1} . \tag{10}
\end{align*}
$$

From (8)-(10), it follows that $L=P$ and the associative law is satisfied. On the other hand, we have

$$
\alpha \circ \beta=\langle a, b, c\rangle \circ\langle u, v, w\rangle=\langle a u-b v, a v+b u, c w\rangle=\beta \circ \alpha
$$

and so the commutative law is satisfied. Finally, we remark that the element $e=\langle 1,0,1\rangle \in S_{n}$ and for every $\alpha \in S_{n}$ we have, by (4), that $\alpha \circ e=e \circ \alpha=\alpha$; therefore, the element $e=\langle 1,0,1\rangle$ is the identity element in the set S_{n}, and the proof of Theorem 1 is complete.

Remark. The set $\left\langle S_{n} ; 0\right\rangle$ is not a group, because α has an inverse in S_{n} if and only if $\alpha=\langle \pm 1,0, \pm 1\rangle$ or $\langle 0, \pm 1, \pm 1\rangle$.

Now, we introduce a special set of matrices:

$$
M_{2}^{(n)}(\mathbb{Z})=\left\{A=\left(\begin{array}{cc}
a & b \tag{*}\\
-b & a
\end{array}\right) ; \operatorname{det} A=c^{n} ; n \geq 2 ; a, b, c \in \mathbb{Z}\right\}
$$

We prove the following.
Theorem 2. Let $M_{2}^{(n)}(\mathbb{Z})$ be the set of all integral matrices defined by (*) with the operation of matrix multiplication, denoted by ".". Then the set $\left\langle S_{n} ; \circ\right\rangle$ is isomorphic to the set $\left\langle M_{2}^{(n)}(\mathbb{Z}), \cdot\right\rangle$.

Proof. Let $\Phi: S_{n} \rightarrow M_{2}^{(n)}(\mathbb{Z})$ be the mapping defined as follows. If $\alpha=$ $\langle a, b, c\rangle \in S_{n}$, then

$$
\Phi(\alpha)=\left(\begin{array}{cc}
a & b \tag{11}\\
-b & a
\end{array}\right)=A ; \operatorname{det} A=c^{n} ; n \geq 2
$$

First, we remark that the mapping Φ is bijective. Further, for $\alpha=\langle a, b, c\rangle \in S_{n}$ and $\beta=\langle u, v, w\rangle \in S_{n}$, we have

$$
\Phi(\alpha \circ \beta)=\Phi(\langle a, b, c\rangle \circ\langle u, v, w\rangle)=\Phi(\langle a u-b v, a v+b u, c w\rangle) .
$$

From the last equality and (11), we obtain

$$
\Phi(\alpha \circ \beta)=\left(\begin{array}{cc}
a u-b v & a v+b u \\
-(a v+b u) & a u-b v
\end{array}\right)=C, \operatorname{det} C=(c w)^{n}=(a u-b v)^{2}+(a v+b u)^{2} .
$$

On the other hand, by (11), it follows that

$$
\begin{align*}
& \Phi(\alpha)=\Phi(\langle a, b, c\rangle)=A=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right), \operatorname{det} A=a^{2}+b^{2}=c^{n} \tag{12}\\
& \Phi(\beta)=\Phi(\langle u, v, w\rangle)=B=\left(\begin{array}{cc}
u & v \\
-v & u
\end{array}\right), \operatorname{det} B=u^{2}+v^{2}=w^{n} \tag{13}
\end{align*}
$$

By (12) and (13), it follows that

$$
\Phi(\alpha) \cdot \Phi(\beta)=A \cdot B=\left(\begin{array}{cc}
a & b \tag{14}\\
-b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
u & v \\
-v & u
\end{array}\right)=\left(\begin{array}{cc}
a u-b v & a v+b u \\
-(a v+b u) & a u-b v
\end{array}\right)
$$

For (14) and Cauchy's theorem on the product of determinants, we obtain

$$
\begin{equation*}
\operatorname{det}(A \cdot B)=\operatorname{det} A \cdot \operatorname{det} B=\left(a^{2}+b^{2}\right)\left(u^{2}+v^{2}\right)=(a u-b v)^{2}+(a v+b u)^{2} \tag{15}
\end{equation*}
$$

By (12), (13), and (15), it follows that $(c w)^{n}=(a u-b v)^{2}+(a v+b u)^{2}=\operatorname{det} C$ and consequently, we obtain $\Phi(\alpha \circ \beta)=\Phi(\alpha) \cdot \Phi(\beta)$, hence, $S_{n} \approx M_{2}^{(n)}(\mathbb{Z})$. The proof of Theorem 2 is complete.

References

1. B. Dawson, "A Ring of Pythagorean Triples," Missouri Journal of Mathematical Sciences, 6 (1994), 72-77.
2. A. Grytczuk, "Note on a Pythagorean Ring," Missouri Journal of Mathematical Sciences, 9 (1997), 83-89.

Aleksander Grytczuk
Institute of Mathematics
Department of Algebra and Number Theory
T. Kotarbiński Pedagogical University

65-069 Zielona Góra, Poland
email: grytal@omega.im.wsp.zgora.pl

