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FINITE PRESENTATIONS OF SUBGROUPS

OF GRAPH GROUPS

Joshua Levy, Cameron Parker, and Leonard VanWyk

Abstract. Given a finite simple graph Γ, the graph group GΓ is the group with

generators in one-to-one correspondence with the vertices of Γ and with relations in

one-to-one correspondence with the edges of Γ: two generators commute if and only

if their associated vertices are adjacent in Γ. Let φ:GΓ → Z be a homomorphism

which maps each generator to 0 or 1. We derive an explicit presentation for kerφ,

and give a condition, dependent on Γ and φ, which guarantees the finite presentation

of kerφ.

1. Introduction. Free partially commutative (FPC) monoids were first in-

troduced by P. Cartier and D. Foata [2] in order to study combinatorial problems

involving rearrangements of words. The corresponding FPC groups are known as

graph groups.

Various properties of graph groups have already been determined. The word

and conjugacy problems for groups were shown to be solvable by C. Wrathall [16,

17] and independently by H. Servatius [11]. Graph groups were shown to satisfy

quadratic isoperimetric and linear isodiametric inequalities by J. Meier [8]. They

were shown to be biautomatic by the third author [14] and independently by S.

Hermiller and J. Meier [5] using the more general notion of a “graph product” of

groups. C. Droms [3, 4, 12], H. Servatius [12], B. Servatius [12] and J. Meier and

the third author [9] have studied various subgroups of graph groups.

The focus of this paper is the kernels of homomorphisms from graph groups

to the infinite cyclic group 〈t〉 in which each generator is mapped to t or 1. In [9],

necessary and sufficient conditions were given for a generalization of such kernels

to be finitely generated. Here, the Reidemeister-Schreier method is used to find

presentations for these kernels and a sufficient condition for their finite presentation

is given. Although not apparent at first, this condition on the constructibility of Γ

will force the “living subgraph” to be connected and a dominating subgraph of Γ,

as in [9].

The main result of this paper, the corollary to Theorem 1, is a condition based

on the constructibility of the graph Γ-partitioned according to the mapping of

the vertices under the homomorphism — from a single vertex using two types of

operations to add edges and vertices. This constructive condition can be phrased
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in terms of simple homotopic expansions of the simplicial complexes spanned by

the representative graphs of the graph groups, as we show in the last section.

Bestvina and Brady [1] have established the existence of groups of homological

type FP2 which are not finitely presented. The group presentations derived here

are applicable to such groups.

2. Preliminaries. Given a graph Γ, we will denote the set of vertices of Γ

by V (Γ) and the set of edges, consisting of unordered pairs of elements of V (Γ), by

E(Γ). A simple graph is a graph with no loops or multiple edges.

A finite simple graph Γ induces a presentation of a group GΓ:

〈V (Γ);xy = yx for all {x, y} ∈ E(Γ)〉.

A group G is called a graph group provided there exists some finite simple graph Γ

such that G ' GΓ. Given any graph group, we will assume the above presentation

and identify the set of generators of GΓ with the vertex set V (Γ).

Following [7], we will denote the Tietze transformations adjunction of relators,

deletion of relators, adjunction of generators, and deletion of generators by (T1),

(T2), (T3), and (T4), respectively. It is shown in [7] that given any two presenta-

tions of a group G, one can be obtained from the other by repeated applications of

these four transformations.

Given a presentation of a group G and suitable information about a subgroup

H ≤ G, the Reidemeister-Schreier method enables one to obtain a presentation

for H. In [6], it is shown that if 〈X;R〉 is a presentation for G, π:F (X) → G is

the canonical epimorphism, T is a Schreier transversal for π−1(H) in F (X), and

Φ:F (X) → T is the function which maps each element to its coset representative,

then Y = {txΦ(tx)−1 : t ∈ T, x ∈ X, tx /∈ T} corresponds to a set of generators for

H. Furthermore, if τ :π−1(H) → F (Y ) is the function in [6] which rewrites each

w ∈ π−1(H) in terms of the generators Y and S = {τ(trt−1) : t ∈ T, r ∈ R}, then

〈Y ;S〉 is a presentation for H.

The reader is directed to [6] or [7] for details of Tietze transformations and the

Reidemeister-Schreier rewriting procedure.

3. The Subgroups. Let Γ be a finite simple graph and GΓ its corre-

sponding graph group. Partition V (Γ) into two sets, A = {a0, a1, . . . , ar} and

B = {b1, b2, . . . , bs} and define the homomorphism φ:GΓ → 〈t〉 by φ(ai) = t and

φ(bi) = 1 for all indices i. Throughout this paper, we will assume A 6= ∅. Following

[9], we will refer to the vertices not mapped to 1 — in this case, the elements of A —
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as live, and denote the full subgraph spanned by these vertices as L = L(φ), the liv-

ing subgraph of Γ. For a Schreier transversal for kerφ in GΓ, take T = {an0 : n ∈ Z}
and recall that Φ:GΓ→ T sends each element to its coset representative. A set of

generators of kerφ is then {txΦ(tx)−1 : t ∈ T, x ∈ X, tx /∈ T}, which we denote by

α(i, n) = an0aia
−(n+1)
0 ,

β(j, n) = an0 bja
−n
0

for i = 1, 2, . . . , r, j = 1, 2, . . . , s, and n ∈ Z. We now obtain the defining set

of relations for kerφ by rewriting the set {trt−1 : t ∈ T, r ∈ R}, where R =

{xyx−1y−1 : {x, y} ∈ E(Γ)}, in terms of these generators. For convenience, we

define α(0, n) = 1 for all n ∈ Z. Straightforward computations show that each

{ai, aj} ∈ E(Γ) yields the family of relations

α(i, n)α(j, n+ 1)α(i, n+ 1)−1α(j, n)−1 = 1, n ∈ Z,

while each {ai, bj} ∈ E(Γ) yields the family

α(i, n)β(j, n+ 1)α(i, n)−1β(j, n)−1 = 1, n ∈ Z,

and each {bi, bj} ∈ E(Γ) yields the family

β(i, n)β(j, n)β(i, n)−1β(j, n)−1 = 1, n ∈ Z.

Thus, kerφ can be presented using the above generators together with the

relations


α(i, n)α(j, n+ 1) = α(j, n)α(i, n+ 1), for {ai, aj} ∈ E(Γ), n ∈ Z,
α(i, n)β(j, n+ 1) = β(j, n)α(i, n), for {ai, bj} ∈ E(Γ), n ∈ Z,
β(i, n)β(j, n) = β(j, n)β(i, n), for {bi, bj} ∈ E(Γ), n ∈ Z.

(1)

Note that every element of V (Γ)− {a0} corresponds to a countable family of gen-

erators and every element of E(Γ) corresponds to a countable family of relations in

this presentation for kerφ.

4. Some Lemmas. We are now ready to prove the following lemmas, which

will aid us in our goal of finding sufficient conditions for the finite presentation of

kerφ.
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Lemma 1. Let Γ be a finite simple graph and let V (Γ) be partitioned into

two sets A and B. Define the homomorphism φ:GΓ → 〈t〉 so that φ(x) = t for

every x ∈ A and φ(x) = 1 for every x ∈ B. Let Γ̂ be the graph constructed from

Γ by adding a vertex c and an edge {c, a} for some a ∈ A. If φ̂:GΓ̂ → 〈t〉 is

a homomorphism that agrees with φ on V (Γ) and maps c to either t or 1, then

there exist presentations for kerφ and ker φ̂ of the form 〈X;R〉 and 〈X ∪ {γ};R〉,
respectively, for some generating symbol γ independent of X.

Proof. We will use the presentation for kerφ calculated in the previous section

and denote it by 〈X;R〉. The vertices of Γ̂ may be partitioned into two subsets,

Â and B̂, such that φ̂ maps every element of Â to t and every element of B̂

to 1. Since exactly one vertex and one edge have been added to Γ, ker φ̂ may

be presented using the generators X and relators R together with one additional

family of generators and one additional family of relations. We denote the family

of generators corresponding to the vertex a by αn and the family of generators

corresponding to c by γn for n ∈ Z.

We first consider the case where c ∈ Â. With our new notation, the first family

in (1) becomes

αnγn+1 = γnαn+1, n ∈ Z. (2)

Straightforward induction shows (2) is equivalent to

γn =

{
[α0α1 · · ·αn−1]−1γ0[α1α2 · · ·αn], n > 0,

[αnαn+1 · · ·α−1]γ0[αn+1αn+2 · · ·α0]−1, n < 0.
(3)

By the Tietze transformations (T1) and (T2), the family of relations (2) can be

replaced by the family (3). Since for all nonzero integers n, γn has been written

in terms of γ0 and elements of X, by (T4) we can eliminate every relation in the

family (3) and every generator γn for n 6= 0. The generators γn for n 6= 0 do not

appear in any of the relations in R, so 〈X ∪ {γ0};R〉 is a presentation for ker φ̂.

Next, we consider the case where c ∈ B̂. The second family of relations in (1)

gives

αnγn+1 = γnαn, n ∈ Z. (4)

Proceeding as in the first case, we replace (4) by

γn =

{
[α0α1 · · ·αn−1]−1γ0[α0α1 · · ·αn−1], n > 0,

[αnαn+1 · · ·α−1]γ0[αnαn+1 · · ·α−1]−1, n < 0.
(5)
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and eliminate every relation in (5) and all the generators γn for n 6= 0. So we again

see that 〈X ∪ {γ0};R〉 is a presentation for ker φ̂, concluding our proof.

Lemma 2. Let Γ be a finite simple graph and let V (Γ) be partitioned into two

sets A and B. Define the homomorphism φ:GΓ → 〈t〉 so that φ(x) = t for every

x ∈ A and φ(x) = 1 for every x ∈ B. Let Γ̂ be the graph constructed from Γ by

adding an edge that joins two vertices that are both adjacent to the same vertex

a ∈ A. If φ̂:GΓ̂ → 〈t〉 is the homomorphism that agrees with φ on V (Γ), then

there exists presentations for kerφ and ker φ̂ of the form 〈X;R〉 and 〈X;R ∪ {r}〉,
respectively, for some relation r not derivable from R.

Proof. We will use the same presentation 〈X;R〉 for kerφ as in Lemma 1.

There are three possible cases for the two vertices joined by the new edge: either

both are elements of A, one is in A and one is in B, or both are elements of B.

For the first case, suppose these two vertices, say a′ and a′′, are both contained

in A. Using our established generators and relations, we see the vertices a, a′, and

a′′ are associated with three families of generators, which we will call αn, α′n, and

α′′n, respectively, where n ∈ Z, and that the edges {a, a′} and {a, a′′} correspond to

the two sets of relations contained in R,

αnα
′
n+1 = α′nαn+1, n ∈ Z, (6)

αnα
′′
n+1 = α′′nαn+1, n ∈ Z. (7)

The added edge {a′, a′′} introduces the new relations

α′nα
′′
n+1 = α′′nα

′
n+1, n ∈ Z. (8)

However, we can use only the relation for n = 0,

α′0α
′′
1 = α′′0α

′
1, (9)

together with the families (6) and (7) to derive the entire family (8) as follows. We

start with (9) and induct on n in both the positive and the negative directions.

Suppose

α′kα
′′
k+1 = α′′kα

′
k+1 (10)

for a particular k ∈ Z. Rewriting every symbol in (10) using the two relations

α′k = αkα
′
k+1α

−1
k+1,

α′′k = αkα
′′
k+1α

−1
k+1,
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from (6) and (7) yields

α′k+1α
′′
k+2 = α′′k+1α

′
k+2,

completing our induction in the positive direction. For the negative direction, we

again use two substitutions derived from (6) and (7) to rewrite (10) as

α′k−1α
′′
k = α′′k−1α

′
k.

We have now shown that (8) can be derived from (9) and relations in R. Hence,

(T2) can be used to delete all relations in (8) except the single relation (9), allowing

ker φ̂ to be presented by 〈X;R ∪ {α′0α′′1 = α′′0α
′
1}〉, as promised.

For the second case, we suppose one vertex a′ is contained in A and one vertex

b′ is in B and denote their corresponding generators by α′n and β′n for n ∈ Z. The

added edge {a′, b′} introduces the relations

α′nβ
′
n+1 = β′nα

′
n, n ∈ Z. (11)

Again, the relation for n = 0,

α′0β
′
1 = β′0α

′
0, (12)

and the relations of the edges {a, b′} and {a, a′} can be used to derive each of

the relations of (11). The same induction technique is used, with one pair of

substitutions to increment the indices on the generators and one pair to decrement

them. Hence, (T2) can be used to delete all the new relations except for (12), giving

the presentation 〈X;R ∪ {α′0β′1 = β′0α
′
0}〉.

Finally, we consider the case where both vertices b′ and b′′ are elements of B.

Once again, we wish to eliminate the family of relations in the sets of generators

β′n and β′′n introduced by the new edge {b′, b′′},

β′nβ
′′
n = β′′nβ

′
n, n ∈ Z. (13)

The special case β′0β
′′
0 = β′′0β

′
0, together with the families of relations corresponding

to the edges {a, b′} and {a, b′′} yield (13) by an induction similar to the previous

two cases, so a single relation can take the place of the infinite set, giving ker φ̂ the

presentation 〈X;R ∪ {β′0β′′0 = β′′0β
′
0}〉.

Thus, we have shown that in each case there exists a relation r such that

ker φ̂ = 〈X;R∪{r}〉. We also know that r is not derivable from R, for if it were, we

would have kerφ = ker φ̂. But the word xyx−1y−1 represents the trivial element

in ker φ̂ but not in kerφ, where x, y ∈ V (Γ) are the two vertices joined by the new

edge.
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Example. Consider the three graphs

where φ:GΓ → 〈t〉 satisfies φ(a) = φ(a′) = φ(a′′) = t and φ(b) = 1. Let φ1 and

φ2 be the homomorphisms corresponding to Γ1 and Γ2, respectively, with the same

vertex mappings as φ. Repeated use of Lemma 1 shows kerφ is the free group on

three letters. However, kerφ1 is not finitely presented [13]. On the other hand,

since Γ2 can be constructed from Γ by two applications of Lemma 2 (first adding

the edge {a, a′′}, and then adding the edge {a′′, b} ), it follows from Lemma 2 that

kerφ2 admits a presentation with three generators and two relations.

Lemma 3. Let G, G1, and G2 be groups with presentations 〈X;R〉, 〈X ∪
{γ};R〉, and 〈X;R∪{r}〉, respectively, for a generating symbol γ independent of X

and a relation r not derivable from R. If G admits a second presentation 〈X ′;R′〉,
then G1 ' 〈X ′∪{γ′};R′〉 and G2 ' 〈X ′;R′∪{r′}〉, where γ′ is a generating symbol

independent of X ′ and r′ is not derivable from R′.

Proof. Since none of the relations of R involve γ,

G1 ' 〈X ∪ {γ};R〉 ' 〈X;R〉 ∗ 〈γ〉 ' 〈X ′;R′〉 ∗ 〈γ〉 ' 〈X ′ ∪ {γ′};R′〉.

For the third group, G2 ' G/N , where N is the normal subgroup of G generated by

the group element g corresponding to r [7]. Thus, if π:F (X)→ G2 and π′:F (X ′)→
G2 are the canonical epimorphisms, G2 ' G/N ' 〈X ′;R′ ∪{r′}〉, where r′ satisfies

g = π(r) = π′(r′). Since r is not derivable from R by hypothesis, r′ is not derivable

from R′.

5. A Condition for Finite Presentation. The first two lemmas provide

a method for adding vertices and edges to our graph while allowing us to keep

track of the generators and relations of the kernel. Specifically, we have found

two operations which may be used to modify the graph and homomorphism so that

either one generator or one relation is added to a certain presentation for the kernel.

With our first theorem, we use Lemma 3 to generalize this method, applying it to

any presentation of the kernel.
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Theorem 1. Let Γ be a finite simple graph and let V (Γ) be partitioned into

two sets A and B. Define the homomorphism φ:GΓ → 〈t〉 so φ(x) = t for every

x ∈ A and φ(x) = 1 for every x ∈ B. Construct a graph Γ̂ from Γ by either

(i) adding a vertex c and an edge {c, a}, where a ∈ A; or

(ii) adding an edge joining two vertices which are both adjacent to the same vertex

a ∈ A,

and let φ̂:GΓ̂ → 〈t〉 be a homomorphism that maps every element of V (Γ̂) to

either t or 1 and agrees with φ on V (Γ). Suppose 〈X ′;R′〉 is any presentation for

kerφ. Then in the first case, ker φ̂ admits the presentation 〈X ′ ∪{γ};R′〉, for some

generating symbol γ independent of X ′, and in the second case, ker φ̂ admits the

presentation 〈X ′;R′ ∪ {r′}〉, where r′ is a relation not derivable from R′.

Proof. In construction (i) of Γ̂, Lemma 1 shows there exists a presentation 〈X∪
{γ};R〉 for ker φ̂, where 〈X;R〉 is a presentation for kerφ and γ is independent of X.

Since 〈X;R〉 and 〈X ′;R′〉 both present the same group, Lemma 3 shows that 〈X ′∪
{γ′};R′〉 presents ker φ̂. For construction (ii), by Lemma 2 there exist presentations

for kerφ and ker φ̂ of the form 〈X;R〉 and 〈X;R ∪ {r}〉, respectively, where r

is not derivable from R. From Lemma 3, we see ker φ̂ admits the presentation

〈X ′;R′ ∪ {r′}〉, where r′ is not derivable from R′.

Henceforth, we will refer to the above constructions as operations of type (i)

and (ii).

Corollary. Let Γ be a finite simple graph and let V (Γ) be partitioned into two

sets A and B. Define the homomorphism φ:GΓ → 〈t〉 so that φ(x) = t for every

x ∈ A and φ(x) = 1 for every x ∈ B. Then kerφ admits a finite presentation if Γ

can be constructed from a single vertex in A by applying a sequence of type (i) and

type (ii) operations. Moreover, one such finite presentation of kerφ is 〈Xf ;Rf 〉,
where |Xf | = |V (Γ)| − 1, |Rf | = |E(Γ)| − |V (Γ)| + 1. In particular, if Γ is a tree

and can be so constructed, then kerφ is free on |V (Γ)| − 1 letters.

Proof. We induct on the number of steps taken to create the graph. The base

case is where Γ consists of the graph on one vertex a0 ∈ A so that V (Γ) = 1,

E(Γ) = 0, and kerφ = {1}.
Proceeding inductively, assume Γ is a partitioned graph constructed in the

above manner and φ is its corresponding homomorphism, and assume there exists

a presentation 〈Xf ;Rf 〉 for kerφ such that |Xf | = |V (Γ)| − 1 and |Rf | = |E(Γ)| −
|V (Γ)|+ 1.

For the type (i) operation, |V (Γ̂)| = |V (Γ)|+ 1 and |E(Γ̂)| = |E(Γ)|+ 1. From

Theorem 1, we know there exists a generating symbol γ independent of Xf such
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that 〈Xf ∪{γ};Rf 〉 is a presentation for ker φ̂, which meets our requirements, since

|Xf ∪ {γ}| = |V (Γ̂)| − 1 and |Rf | = |E(Γ̂)| − |V (Γ̂)|+ 1.

For the type (ii) operations, |V (Γ̂)| = |V (Γ)| and |E(Γ̂)| = |E(Γ)| + 1. Again

from Theorem 1, we know there exists a relation r′ not derivable from Rf such

that 〈X;Rf ∪{r′}〉 presents ker φ̂. This presentation again meets our requirements,

since |Xf | = |V (Γ̂)| − 1 and |Rf ∪{r′}| = |E(Γ̂)| − |V (Γ̂)|+ 1. So by induction, the

statement holds for all graphs that can be built by this method.

The last assertion of the corollary is immediate, since |V (T )| = |E(T )|+ 1 for

a tree T .

6. Connections. Whitehead [15] defines elementary deformations of simpli-

cial complexes so that if K0 and K1 are simplicial complexes with K1 = K0 + aC,

where C is a closed simplex such that aĊ ⊆ K0 and C 6⊆ K0, then the transfor-

mation K0 → K1 is called an elementary expansion of order dim(aC), and the

transformation K1 → K0 is called an elementary contraction of order dim(aC).

If instead of restricting ourselves to the graph Γ, we consider the 2-skeleton Γ(2)

of the simplicial complex spanned by Γ, then an operation of type (i) corresponds

to an elementary simplicial expansion K0 → K0 + ax of order 1, where a ∈ A

and x ∈ V (Γ), while an operation of type (ii) above corresponds to an elementary

simplicial expansion K0 → K0 + ae of order 2, where a ∈ A and e ∈ E(Γ). Thus,

we are building a subcomplex of Γ(2), starting with a single live vertex of A and

performing elementary simplicial expansions of orders 1 and 2 in which the cone

vertex a in each expansion is live.

By [15], if Γ can be constructed from a single live vertex a0 ∈ A, by a sequence

of operations of types (i) and (ii), then Γ can be constructed as {a0}
(i)−→T (ii)−→Γ,

where
(i)−→ and

(ii)−→ denote a sequence of operations of type (i) and type (ii), re-

spectively, and T is a tree. Since operations of type (ii) add no new vertices, T is

a spanning tree for Γ. Notice the elementary expansions of orders 1 and 2 corre-

sponding to {a0}
(i)−→T (ii)−→Γ yield a contractible subcomplex of Γ(2) which contains

all the edges of Γ.

The definition of a type (i) operation implies that each vertex b ∈ B has degree

1 in T . Also, for each b ∈ B, there exists a vertex a ∈ A which is adjacent to b

in T . Finally, if we let TA ⊆ T be the subtree spanned by the vertex set A, then

TA is connected by construction since there exists a (unique) path from any vertex

a ∈ A to a0 containing only live vertices.

For our next lemma, recall that a subgraph C of a graph Γ is dominating if

every vertex in V (Γ)− V (C) is adjacent to a vertex in C.
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Lemma 4. Let Γ be a finite simple graph with V (Γ) partitioned into two sets

A and B, and let L be the full subgraph spanned by A. Then L is a connected and

dominating subgraph of Γ if and only if for all a ∈ A, there exists a spanning tree

T of Γ such that {a} (i)−→T .

Proof. (⇒) Let a ∈ A and let TA be a connected spanning tree for L. Since TA
consists of live vertices, there exists a sequence of type (i) operations {a} (i)−→TA.

Since L is dominating, there exists a function λ:B → A that maps each vertex

b ∈ B to a vertex in A which is adjacent to b in Γ. Thus, λ can be used to define a

sequence of type (i) operations TA
(i)−→T , where T is a spanning tree for Γ.

(⇐) By the previous paragraphs, the live subtree TA is a connected and dom-

inating subgraph of the spanning tree T of Γ. Because TA is a spanning tree for L,

we know L is a connected and dominating subgraph of Γ.

Theorem 6.1 of [9] states that any nontrivial homomorphism χ:GΓ → 〈t〉
has a finitely generated kernel if and only if L(χ) – the full subgraph spanned by

{v ∈ V (Γ) : χ(v) 6= 1} — is a connected and dominating subgraph of Γ. This

implies our next result.

Theorem 2. Let Γ be a finite simple graph and let V (Γ) be partitioned into

two sets A and B. Define the homomorphism φ:GΓ → 〈t〉 so φ(x) = t for every

x ∈ A and φ(x) = 1 for every x ∈ B. Then kerφ is finitely generated if and only if

for all a ∈ A, there exists a spanning tree T of Γ such that {a} (i)−→T .

Hence, the finite generation of kerφ is encoded in the operations of type (i)

from any live vertex of Γ to a spanning tree for Γ. However, the operations of type

(i) alone do not provide enough information to determine the finite presentation of

kerφ, as Example 1 shows. It follows that the finite presentation is encoded in the

expansions of type (ii) in the sequence {a0}
(i)−→T (ii)−→Γ.

In [3], Droms proved a graph group GΓ is coherent — that is, each of its finitely

generated subgroups is finitely presented — if and only if each circuit of Γ of length

greater than three has a chord. Hence, if Γ is chordal and for all a ∈ A, there exists

a spanning tree T of Γ such that {a} (i)−→T , then kerφ is finitely presented.

Proposition. Let Γ be a finite simple graph with V (Γ) partitioned into two sets

A and B and suppose for all a ∈ A there exists a spanning tree T of Γ such that

{a} (i)−→T . Then if Γ is chordal, it can be constructed from any live vertex a ∈ A
by a sequence of type (i) and type (ii) operations.

Proof. Let a ∈ A and T be the corresponding spanning tree. Let Γ′ be a graph

with the maximal number of edges which contains T and that can be constructed
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by a sequence of type (i) and type (ii) operations from {a}. Since Γ′ contains T ,

V (Γ′) = V (Γ).

Suppose Γ′ 6= Γ. For each e = {x, y} ∈ E(Γ) − E(Γ′), define l(e) to be the

length of a minimal circuit in the graph Γ′ ∪ {e} consisting of live vertices, with

the possible exception of x and y. Such a circuit exists since Γ′ contains T . Let

e0 ∈ E(Γ)− E(Γ′) be minimal with respect to this length.

Since e0 /∈ E(Γ′), we must have l(e0) > 3, since otherwise e0 could be con-

structed from Γ′ by a type (ii) operation, contradicting the maximality of Γ′. Let

c be any minimal length circuit for e0 as above. Then by hypothesis, c has a chord

e′, and e′ divides c into two circuits, each of length less than c. By minimality of

c, e′ /∈ E(Γ′). But then l(e′) < l(e0), contradicting the minimality of l(e0). Thus

Γ′ = Γ and hence, Γ can be constructed by a sequence of type (i) and type (ii)

operations from {a}.
The converse of this proposition is false; the construction of Corollary 1 gives

finitely presented subgroups of graph groups which are not based on chordal graphs,

such as the case where Γ is the cone on a square and the cone vertex is an element

of A.

This work is the result of NSF grant number DMS 9322328, an NSF-funded

Research Experiences for Undergraduates project at Hope College of the first two

authors under the direction of the third.
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