A NOTE ON LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Richard E. Bayne, James E. Joseph, Myung H. Kwack, and Thomas H. Lawson

As is well-known, when $a \neq b$,

$$
\begin{equation*}
y=c_{1} e^{a x}+c_{2} e^{b x} \tag{1}
\end{equation*}
$$

is a general solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-(a+b) y^{\prime}+a b y=0 \tag{2}
\end{equation*}
$$

In [1], Euler points out the fact that

$$
\begin{equation*}
y=c_{1} e^{a x}+c_{2} x e^{a x} \tag{3}
\end{equation*}
$$

is a general solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0 \tag{4}
\end{equation*}
$$

although easily checked, is not so easily motivated. He provided a technique to show how this fact arises. In this paper, we offer a technique which shows how solutions (1) and (3) arise as general solutions of (2) and (4), respectively. We then use this technique, along with induction, to give the form of a general solution of the nth order linear differential equation with complex coefficients.

Motivation for Technique. If a and b are complex constants, a general solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-(a+b) y^{\prime}+a b y=q(x) \tag{5}
\end{equation*}
$$

is

$$
\begin{equation*}
y=e^{a x} \int e^{(b-a) x}\left(\int e^{-b x} q(x) d x\right) d x \tag{6}
\end{equation*}
$$

Proof. Writing the equivalent form

$$
\begin{equation*}
\left(y^{\prime}-a y\right)^{\prime}-b\left(y^{\prime}-a y\right)=q(x) \tag{7}
\end{equation*}
$$

for the differential equation in (5) and multiplying through by the integrating factor $e^{-b x}$, we find that

$$
\begin{equation*}
y^{\prime}-a y=e^{b x} \int e^{-b x} q(x) d x \tag{8}
\end{equation*}
$$

is a general solution of (7). Multiplying through by the integrating factor $e^{-a x}$ in (8), we obtain

$$
\begin{equation*}
y=e^{a x} \int e^{(b-a) x}\left(\int e^{-b x} q(x) d x\right) d x \tag{9}
\end{equation*}
$$

as a general solution of (5).
Utilization of the same technique and induction yields the following theorem.
Theorem. If n is a positive integer, a_{1}, \ldots, a_{n} are complex constants, $s_{0}=1$, and for $k=1, \ldots, n, s_{k}=\sum_{\phi} \prod a_{\phi(j)}$, where ϕ is a strictly increasing function from $\{1, \ldots, k\}$ to $\{1, \ldots, n\}$, then a general solution to

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} s_{k} y^{(n-k)}=q(x) \tag{10}
\end{equation*}
$$

is
$y=e^{a_{n} x} \int\left(\int e^{\left(a_{n-1}-a_{n}\right) x}\left(\int \cdots\left(\int e^{\left(a_{1}-a_{2}\right) x} \int e^{-a_{1} x} q(x) d x\right) d x \cdots d x\right) d x\right) d x$.

Proof. (By Induction). For $n=1$, the hypothesis of the statement to be proved is that

$$
\begin{equation*}
y^{\prime}-a y=q(x) \tag{11}
\end{equation*}
$$

The equation in (11) has

$$
\begin{equation*}
y=e^{a x} \int e^{-a x} q(x) d x \tag{12}
\end{equation*}
$$

as a general solution. Suppose the statement holds for the integer n and that

$$
\begin{equation*}
\sum_{k=0}^{n+1}(-1)^{k} s_{k} y^{(n+1-k)}=q(x) \tag{13}
\end{equation*}
$$

where a_{k} for $k=1, \ldots, n+1$ and s_{k} are as described above. Then by the linearity of differentiation,

$$
\begin{equation*}
\left(\sum_{k=0}^{n}(-1)^{k} s_{k} y^{(n-k)}\right)^{\prime}-a_{1}\left(\sum_{k=0}^{n}(-1)^{k} s_{k} y^{(n-k)}\right)=q(x) \tag{14}
\end{equation*}
$$

where $s_{0}=1$ and for each $k=1, \ldots, n, s_{k}=\sum_{\phi} \prod a_{\phi(j)}$, where each ϕ is a strictly increasing function from $\{1, \ldots, k\}$ to $\{2, \ldots, n+1\}$. From the case for 1 , a general solution of the equation in (14) is

$$
\sum_{k=0}^{n}(-1)^{k} s_{k} y^{(n-k)}=e^{a_{1} x} \int e^{-a_{1} x} q(x) d x
$$

and from the induction hypothesis, we obtain

$$
y=e^{a_{n+1} x} \int\left[\int e^{\left(a_{n}-a_{n+1}\right) x}\left[\int \cdots\left[\int e^{\left(a_{1}-a_{2}\right) x} \int e^{-a_{1} x} q(x) d x\right] d x \cdots d x\right] d x\right] d x
$$

as a general solution of (13) and the proof is complete.
The following corollaries arise naturally from the Theorem. The proofs are omitted.

Corollary. If n is a positive integer and a is a complex constant, a general solution to

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a^{k} y^{(n-k)}=q(x)
$$

is

$$
y=e^{a x} \underbrace{\int\left(\int \cdots\left(\int e^{-a x} q(x) d x\right) \cdots d x\right) d x}_{n \text { integrals }}
$$

Corollary. If n is a positive integer and a is a complex constant, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a^{k} y^{(n-k)}=0
$$

has

$$
y=e^{a x} \sum_{k=0}^{n-1} c_{k} x^{n-1-k}
$$

as a general solution.
When viewed in the terminology of differential operators, the proof of the theorem is perhaps a bit more transparent. In this terminology, (10) may be written as

$$
\left(\prod_{k=1}^{n}\left(D-a_{k}\right)\right) y=q(x)
$$

and

$$
\left(\prod_{k=1}^{n+1}\left(D-a_{k}\right)\right) y=D\left(\left[\prod_{k=2}^{n+1}\left(D-a_{k}\right)\right] y\right)-a_{1}\left(\prod_{k=2}^{n+1}\left(D-a_{k}\right)\right) y
$$

from which the inductive step follows.

Reference

1. R. Euler, "A Note on a Differential Equation," Missouri Journal of Mathematical Sciences, 1 (1989), 26-27.

Richard E. Bayne
James E. Joseph
Myung H. Kwack
Department of Mathematics
Howard University
Washington, D.C. 20059
email: bayne@scs.howard.edu
Thomas H. Lawson
Center for Academic Reinforcement
Howard University
Washington, D.C. 20059

