A NOTE ON LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Richard E. Bayne, James E. Joseph, Myung H. Kwack, and Thomas H. Lawson

As is well-known, when $a \neq b$,

(1)
$$y = c_1 e^{ax} + c_2 e^{bx}$$

is a general solution of the differential equation

(2)
$$y'' - (a+b)y' + aby = 0.$$

In [1], Euler points out the fact that

$$(3) y = c_1 e^{ax} + c_2 x e^{ax}$$

is a general solution of the differential equation

(4)
$$y'' - 2ay' + a^2y = 0,$$

although easily checked, is not so easily motivated. He provided a technique to show how this fact arises. In this paper, we offer a technique which shows how solutions (1) and (3) arise as general solutions of (2) and (4), respectively. We then use this technique, along with induction, to give the form of a general solution of the *n*th order linear differential equation with complex coefficients.

Motivation for Technique. If a and b are complex constants, a general solution of the differential equation

(5)
$$y'' - (a+b)y' + aby = q(x)$$

is

(6)
$$y = e^{ax} \int e^{(b-a)x} \left(\int e^{-bx} q(x) dx \right) dx.$$

<u>Proof</u>. Writing the equivalent form

(7)
$$(y' - ay)' - b(y' - ay) = q(x)$$

for the differential equation in (5) and multiplying through by the integrating factor e^{-bx} , we find that

(8)
$$y' - ay = e^{bx} \int e^{-bx} q(x) dx$$

is a general solution of (7). Multiplying through by the integrating factor e^{-ax} in (8), we obtain

(9)
$$y = e^{ax} \int e^{(b-a)x} \left(\int e^{-bx} q(x) dx \right) dx$$

as a general solution of (5).

Utilization of the same technique and induction yields the following theorem.

<u>Theorem</u>. If n is a positive integer, a_1, \ldots, a_n are complex constants, $s_0 = 1$, and for $k = 1, \ldots, n$, $s_k = \sum_{\phi} \prod a_{\phi(j)}$, where ϕ is a strictly increasing function from $\{1, \ldots, k\}$ to $\{1, \ldots, n\}$, then a general solution to

(10)
$$\sum_{k=0}^{n} (-1)^k s_k y^{(n-k)} = q(x)$$

٠		
1	c	2
T	ĸ	2

$$y = e^{a_n x} \int \left(\int e^{(a_{n-1}-a_n)x} \left(\int \cdots \left(\int e^{(a_1-a_2)x} \int e^{-a_1 x} q(x) dx \right) dx \cdots dx \right) dx \right) dx$$

<u>Proof.</u> (By Induction). For n = 1, the hypothesis of the statement to be proved is that

(11)
$$y' - ay = q(x).$$

The equation in (11) has

(12)
$$y = e^{ax} \int e^{-ax} q(x) dx$$

as a general solution. Suppose the statement holds for the integer n and that

(13)
$$\sum_{k=0}^{n+1} (-1)^k s_k y^{(n+1-k)} = q(x),$$

where a_k for k = 1, ..., n+1 and s_k are as described above. Then by the linearity of differentiation,

(14)
$$\left(\sum_{k=0}^{n} (-1)^{k} s_{k} y^{(n-k)}\right)' - a_{1} \left(\sum_{k=0}^{n} (-1)^{k} s_{k} y^{(n-k)}\right) = q(x),$$

where $s_0 = 1$ and for each k = 1, ..., n, $s_k = \sum_{\phi} \prod a_{\phi(j)}$, where each ϕ is a strictly increasing function from $\{1, ..., k\}$ to $\{2, ..., n+1\}$. From the case for 1, a general solution of the equation in (14) is

$$\sum_{k=0}^{n} (-1)^k s_k y^{(n-k)} = e^{a_1 x} \int e^{-a_1 x} q(x) dx$$

and from the induction hypothesis, we obtain

$$y = e^{a_{n+1}x} \int \left[\int e^{(a_n - a_{n+1})x} \left[\int \cdots \left[\int e^{(a_1 - a_2)x} \int e^{-a_1x} q(x) dx \right] dx \cdots dx \right] dx \right] dx$$

as a general solution of (13) and the proof is complete.

The following corollaries arise naturally from the Theorem. The proofs are omitted.

Corollary. If n is a positive integer and a is a complex constant, a general solution to

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} a^{k} y^{(n-k)} = q(x)$$

$$y = e^{ax} \underbrace{\int \left(\int \cdots \left(\int e^{-ax} q(x) dx \right) \cdots dx \right) dx.}_{n \text{ integrals}}$$

Corollary. If n is a positive integer and a is a complex constant, then

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} a^{k} y^{(n-k)} = 0$$

has

$$y = e^{ax} \sum_{k=0}^{n-1} c_k x^{n-1-k}$$

as a general solution.

When viewed in the terminology of differential operators, the proof of the theorem is perhaps a bit more transparent. In this terminology, (10) may be written as

$$\left(\prod_{k=1}^{n} (D - a_k)\right)y = q(x)$$

and

$$\left(\prod_{k=1}^{n+1} (D-a_k)\right) y = D\left(\left[\prod_{k=2}^{n+1} (D-a_k)\right] y\right) - a_1\left(\prod_{k=2}^{n+1} (D-a_k)\right) y,$$

from which the inductive step follows.

is

Reference

1. R. Euler, "A Note on a Differential Equation," Missouri Journal of Mathematical Sciences, 1 (1989), 26–27.

Richard E. Bayne James E. Joseph Myung H. Kwack Department of Mathematics Howard University Washington, D.C. 20059 email: bayne@scs.howard.edu

Thomas H. Lawson Center for Academic Reinforcement Howard University Washington, D.C. 20059