SUBADDITION

David Choate

Abstract. Let $S = \{z = x + yj | x \text{ and } y \text{ real}, -\pi < y \leq \pi\}$ and let $S^* = S \cup \{-\infty\}$. If $z = x_1 + y_1 j$, $w = x_2 + y_2 j \in S$, then define a *cylindrical addition*, \oplus , on S^* by $z \oplus w = (x_1 + x_2) + [(y_1 + y_2) \pmod{2\pi}]j$ and $z \oplus -\infty = -\infty$ for all $z \in S^*$. Define a subaddition, \odot , on S^* by $z \odot w = \log(e^z + e^w)$. Then $(C, +, \cdot) \cong (S^*, \oplus, \odot)$.

Subaddition has an application in signal processing.

A channel's fading can be modeled as the product of a slowly varying component and the transmitted signal. An amplitude-modulated signal can also be represented by a product of a carrier signal and envelope function.

The logarithmic function will transform a system modeled on a product to a conventional linear system that will yield to a classical attack. It is shown here that the logarithm, as a generalized superposition, will also transform a conventional linear system into another linear system, and therefore, nothing need be known about the original system before applying a logarithmic transformation.

1. Introduction. Let $S = \{z = x + yj | x \text{ and } y \text{ real}, -\pi < y \leq \pi\}$ or equivalently, after an appropriate adjustment of the residue of y modulo 2π , $S = \{z = x + y \pmod{2\pi} \mid x \text{ and } y \text{ real }\}$, a horizontal strip. Let $S^* = S \cup \{-\infty\}$. Also, let $z = x_1 + y_1 j$ and $w = x_2 + y_2 j \in S^*$. Now, define a cylindrical addition on S^* as

$$z \oplus w = (x_1 + x_2) + [(y_1 + y_2) \mod (2\pi)]j$$

if both z and w are in S; otherwise $z \oplus w = -\infty$.

If $z = re^{j\theta}$, then define $\log(z) = \ln |r| + [\theta \pmod{2\pi}]j$ as usual.

Now let $z, w \in S^*$. Then define a new operation called *subaddition* on S^* , denoted by \odot , by

$$z \odot w = \log(e^z + e^w).$$

If we define $z \odot -\infty = -\infty = z \odot -\infty$ for every z in S^* , then \odot is an operation on S^* , and clearly,

$$\log(z+w) = \log z \odot \log w.$$

2. The Field $(\mathbf{S}^*, \oplus, \odot)$. It is a simple exercise to show that (S^*, \oplus, \odot) is a field, and, in fact, it will soon become unnecessary to do so. But for the purpose of illustration observe that the subadditive identity is $-\infty$ since

$$z \odot -\infty = \log(e^z + e^{-\infty}) = z.$$

Also, observe that if $z \in S$, then its subadditive inverse is $\pi j \oplus z$ since

$$z \odot (\pi j \oplus z) = \log(e^z + e^{j\pi + z})$$
$$= \log[e^z(1 + e^{j\pi})]$$
$$= \log(0)$$
$$= -\infty.$$

Certainly the subadditive inverse of $-\infty$ is $-\infty$. Therefore, every element in S^* has a subadditive inverse.

Furthermore, the distributive law of cylindrical addition over subaddition can be established with the following calculation.

For $u, v, w, \in S^*$,

$$u \oplus (v \odot w) = \log(e^{u}) \oplus \log(e^{v} + e^{w})$$
$$= \log[e^{u}(e^{v} + e^{w})]$$
$$= \log(e^{u+v} + e^{u+w})$$
$$= \log(e^{u\oplus v} + e^{u\oplus w})$$
$$= (u \oplus v) \odot (u \oplus w).$$

Observe that just as 0 has no multiplicative inverse in C, $-\infty$ has no cylindrical additive inverse in S^* and that the equation $-\infty \oplus z = -\infty$ is the *- equivalent to (0)z = 0 in C.

<u>Theorem 1</u>. $(C, \cdot, +) \cong (S^*, \oplus, \odot)$. <u>Proof.</u> Define $\phi : C \to S^*$ by $\phi(z) = \log(z)$. Then,

$$\phi(z_1 z_2) = \log(z_1 z_2)$$
$$= \log(z_1) \oplus \log(z_2)$$
$$= \phi(z_1) \oplus \phi(z_2).$$

Furthermore,

$$\phi(z_1 + z_2) = \log(z_1 + z_2)$$
$$= \log(z_1) \odot \log(z_2)$$
$$= \phi(z_1) \odot \phi(z_2).$$

If $w \in S$, then its preimage under ϕ , $w \in S$, is e^w . Also the preimage of $-\infty$ is 0; so ϕ is onto.

If $\phi(z) = 0_{S^*}$, then $\log(z) = -\infty$, or z = 0; so ϕ is one-to-one.

3. The Complex Cylinder. There is a simple geometric interpretation of Theorem 1. Map the complex plane in Figure 1 onto the horizontal strip in Figure 2 by $f(z = re^{j\theta}) = \ln |r| + [\theta \pmod{2\pi}]j$. The three circles in the complex plane with radii e^{-1} , 1 and e are mapped into the three vertical lines in Figure 2. Since the upper and lower lines of the horizontal strip have been identified in the same congruence class modulo 2π , we have a cylinder shown in Figure 3.

Figure 1.

Figure 2.

Figure 3.

To include $-\infty$ we must look down the right end of the cylinder. The circle with center $+1 = \log(e^{+1})$ appears the largest, the circle with center $-1 = \log(e^{-1})$ appears smallest and the end of the cylinder, $-\infty$, is a dot. This is the logarithmic image of Figure 1, the original complex plane.

4. Positive Infinity. Let $T^* = S \cup \{+\infty\}$ and define a new cylindrical addition as before except that $z \oplus +\infty = +\infty$ for any z in T^* . If we define a new subaddition \otimes on T^* to be

$$z \otimes w = \log\{1/[(1/e^z) + (1/e^w)]\},\$$

then it is easy to show, by a similar argument, that $(T^*, \oplus, \otimes) \cong (C, \cdot, +)$.

5. S*-Versions. To illustrate how easily theorems can be logarithmically transformed from $(C, \cdot, +)$ to (S^*, \oplus, \odot) consider the *cylindrical quadratic equation*

$$(a \oplus 2x) \odot (b \oplus x) \odot (c) = -\infty$$

where $a, b, c, \in S^*$ and $a \neq -\infty$. (Of course, $2x = x \oplus x$.) Then we see at once that

$$x = \langle (\pi j \oplus b) \odot \{ [(2b) \odot (\pi j \oplus \log 4 \oplus a \oplus c)]/2 \} \rangle \oplus [\log(1/2) \oplus (-a)]$$

or	
01	

$$x = \llbracket (\pi j \oplus b) \odot \langle \pi j \oplus \{ [(2b) \odot (\pi j \oplus \log 4 \oplus a \oplus c)]/2 \} \rangle \rrbracket \oplus [\log(1/2) \oplus (-a)],$$

where cylindrical addition must be performed before subaddition.

6. A Superposition. All undefined and underdefined terms and symbols used in this section can be found in Chapter 5 of [1]. In fact, we are given a definition of a *superposition* H, a generalization of a system transformation, which must satisfy:

1. $H[x_1(n)\Box x_2(n)] = H(x_1(n) \circ x_2(n)]$

2. $H[c:x(n)] = c \uplus H(x(n)],$

where \Box is an input operation and \circ is an output operation and where : and \uplus represent scalar multiplication.

Now, define $H: C \to S^*$ by $H(z) = \log(z)$. If we let

i. \Box be +, ordinary addition in C,

ii. \circ be \odot , or subaddition in S^* ,

iii. : be scalar multiplication in C, and

$$c \uplus H[x] = \log(c) \oplus H(x),$$

then we have a generalized superposition H (where H stands for homomorphism.)

But by [1] we can show that this homomorphic system can be written as a cascade of three systems provided that \odot is commutative and associative (Theorem 1) and that we can prove the following theorem.

<u>Theorem 2</u>. The additive group S^* space under \odot is a vector space over C with scalar multiplication \boxplus .

<u>Proof.</u> Let $\alpha, \beta \in C$ and $v, w, \in S^*$. We now establish the four properties of a vector space.

(i.)
$$\alpha \uplus (v \odot w) = \log(\alpha) \oplus (v \odot w)$$
$$= [\log(\alpha) \oplus v] \odot [\log(\alpha) \oplus w]$$
$$= (\alpha \uplus v) \odot (\alpha \uplus w).$$

(*ii.*)

$$(\alpha \oplus \beta) \uplus v = \log(\alpha + \beta) \oplus v$$

$$= [\log(\alpha) \odot \log(\beta)] \oplus v$$

$$= [\log(\alpha) \oplus v] \odot [\log(\beta) \oplus w]$$

$$= (\alpha \uplus v) \odot (\beta \boxplus w).$$

(*iii.*)
$$\alpha \uplus (\beta \uplus v) = \log(\alpha) \oplus [\log(\beta) \oplus v]$$
$$= \log(\alpha\beta) \oplus v$$
$$= (\alpha\beta) \uplus v.$$

(*iv.*)
$$1 \uplus v = \log(1) \oplus v$$

 $= v.$

Again, by [1] we know that since the system inputs constitute a vector space of complex numbers under addition and ordinary scalar multiplication and that the system outputs constitute a vector space under \odot , the subaddition, and \bowtie , the scalar multiplication, then all systems of this class can be represented as a cascade of three systems where D_+ , or log(\cdot) transforms a product or a sum into a conventional linear system L, and $(D\oplus)^{-1}$ is $\exp(\cdot)$.

Figure 4.

Some systems can be modeled as products. For example, a channel's fading can be modeled as the product of a slowly varying component and the transmitted signal. An amplitude-modulated signal can also be represented by the product of a carrier signal and envelope function. In these systems homomorphic signal processing for multiplication can be used to determine frequencies. Superposition is a generalized principle of homomorphic signal processing.

The logarithmic function will transform a system modeled on a product to a conventional linear system that will yield to a classical attack. But a channel may or may not be fading. A signal may or may not be an amplitude-modulated one. It has been shown here that the logarithm, as a generalized superposition, will also transform a conventional linear system into another linear system, and therefore, nothing need be known about the system before applying a logarithmic transformation. This research was sponsored by the Air Force Office of Scientific Research/AFSC, United States Air Force, under Contract F49620-93-C-0063. The Air Force is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notification hereon.

Reference

 A. V. Oppenheim and R. W. Schafer, "Digital Signal Processing," Prentice-Hall, 1975.

David Choate Department of Mathematics Transylvania University Lexington, KY 40508-1797 email: dchoate@music.transy.edu