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SUBADDITION

David Choate

Abstract. Let S = {z = x + yj|x and y real, −π < y ≤ π} and let S∗ =

S ∪{−∞}. If z = x1 + y1j, w = x2 + y2j ∈ S, then define a cylindrical addition, ⊕,

on S∗ by z⊕w = (x1+x2)+[(y1+y2) (mod 2π)]j and z⊕−∞ = −∞ for all z ∈ S∗.
Define a subaddition, �, on S∗ by z�w = log(ez+ew). Then (C,+, ·) ∼= (S∗,⊕,�).

Subaddition has an application in signal processing.

A channel’s fading can be modeled as the product of a slowly varying com-

ponent and the transmitted signal. An amplitude-modulated signal can also be

represented by a product of a carrier signal and envelope function.

The logarithmic function will transform a system modeled on a product to a

conventional linear system that will yield to a classical attack. It is shown here that

the logarithm, as a generalized superposition, will also transform a conventional

linear system into another linear system, and therefore, nothing need be known

about the original system before applying a logarithmic transformation.

1. Introduction. Let S = {z = x + yj|x and y real, −π < y ≤ π} or

equivalently, after an appropriate adjustment of the residue of y modulo 2π, S =

{z = x+y (mod 2π)j|x and y real }, a horizontal strip. Let S∗ = S∪{−∞}. Also,

let z = x1 + y1j and w = x2 + y2j ∈ S∗. Now, define a cylindrical addition on S∗

as

z ⊕ w = (x1 + x2) + [(y1 + y2) mod (2π)]j

if both z and w are in S; otherwise z ⊕ w = −∞.

If z = rejθ, then define log(z) = ln |r|+ [θ (mod 2π)]j as usual.

Now let z, w ∈ S∗. Then define a new operation called subaddition on S∗,

denoted by �, by

z � w = log(ez + ew).

If we define z�−∞ = −∞ = z�−∞ for every z in S∗, then � is an operation on

S∗, and clearly,

log(z + w) = log z � logw.
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2. The Field (S∗,⊕,�). It is a simple exercise to show that (S∗,⊕,�) is a

field, and, in fact, it will soon become unnecessary to do so. But for the purpose

of illustration observe that the subadditive identity is −∞ since

z �−∞ = log(ez + e−∞) = z.

Also, observe that if z ∈ S, then its subadditive inverse is πj ⊕ z since

z � (πj ⊕ z) = log(ez + ejπ+z)

= log[ez(1 + ejπ)]

= log(0)

= −∞.

Certainly the subadditive inverse of −∞ is −∞. Therefore, every element in S∗

has a subadditive inverse.

Furthermore, the distributive law of cylindrical addition over subaddition can

be established with the following calculation.

For u, v, w,∈ S∗,

u⊕ (v � w) = log(eu)⊕ log(ev + ew)

= log[eu(ev + ew)]

= log(eu+v + eu+w)

= log(eu⊕v + eu⊕w)

= (u⊕ v)� (u⊕ w).

Observe that just as 0 has no multiplicative inverse in C, −∞ has no cylindrical

additive inverse in S∗ and that the equation −∞⊕ z = −∞ is the ∗− equivalent

to (0)z = 0 in C.

Theorem 1. (C, ·,+) ∼= (S∗,⊕,�).

Proof. Define φ : C → S∗ by φ(z) = log(z). Then,

φ(z1z2) = log(z1z2)

= log(z1)⊕ log(z2)

= φ(z1)⊕ φ(z2).
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Furthermore,

φ(z1 + z2) = log(z1 + z2)

= log(z1)� log(z2)

= φ(z1)� φ(z2).

If w ∈ S, then its preimage under φ, w ∈ S, is ew. Also the preimage of −∞
is 0; so φ is onto.

If φ(z) = 0S∗ , then log(z) = −∞, or z = 0; so φ is one-to-one.

3. The Complex Cylinder. There is a simple geometric interpretation of

Theorem 1. Map the complex plane in Figure 1 onto the horizontal strip in Figure

2 by f(z = rejθ) = ln |r| + [θ (mod 2π)]j. The three circles in the complex plane

with radii e−1, 1 and e are mapped into the three vertical lines in Figure 2. Since

the upper and lower lines of the horizontal strip have been identified in the same

congruence class modulo 2π, we have a cylinder shown in Figure 3.

Figure 1.
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Figure 2.

Figure 3.
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To include −∞ we must look down the right end of the cylinder. The circle

with center +1 = log(e+1) appears the largest, the circle with center −1 = log(e−1)

appears smallest and the end of the cylinder, −∞, is a dot. This is the logarithmic

image of Figure 1, the original complex plane.

4. Positive Infinity. Let T ∗ = S ∪ {+∞} and define a new cylindrical

addition as before except that z ⊕+∞ = +∞ for any z in T ∗. If we define a new

subaddition ⊗ on T ∗ to be

z ⊗ w = log{1/[(1/ez) + (1/ew)]},

then it is easy to show, by a similar argument, that (T ∗,⊕,⊗) ∼= (C, ·,+).

5. S∗−Versions. To illustrate how easily theorems can be logarithmically

transformed from (C, ·,+) to (S∗,⊕,�) consider the cylindrical quadratic equation

(a⊕ 2x)� (b⊕ x)� (c) = −∞

where a, b, c,∈ S∗ and a 6= −∞. (Of course, 2x = x⊕ x.) Then we see at once that

x = 〈(πj ⊕ b)� {[(2b)� (πj ⊕ log 4⊕ a⊕ c)]/2}〉 ⊕ [log(1/2)⊕ (−a)]

or

x = [[(πj ⊕ b)� 〈πj ⊕ {[(2b)� (πj ⊕ log 4⊕ a⊕ c)]/2}〉]]⊕ [log(1/2)⊕ (−a)],

where cylindrical addition must be performed before subaddition.

6. A Superposition. All undefined and underdefined terms and symbols

used in this section can be found in Chapter 5 of [1]. In fact, we are given a

definition of a superposition H, a generalization of a system transformation, which

must satisfy:

1. H[x1(n)tux2(n)] = H(x1(n) ◦ x2(n)]

2. H[c : x(n)] = c ]H(x(n)],

where tu is an input operation and ◦ is an output operation and where : and ]
represent scalar multiplication.

Now, define H : C → S∗ by H(z) = log(z). If we let

i. tu be +, ordinary addition in C,
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ii. ◦ be �, or subaddition in S∗,

iii. : be scalar multiplication in C, and

iv. ] be a scalar operation in S∗ over C defined by

c ]H[x] = log(c)⊕H(x),

then we have a generalized superposition H (where H stands for homomorphism.)

But by [1] we can show that this homomorphic system can be written as a

cascade of three systems provided that � is commutative and associative (Theorem

1) and that we can prove the following theorem.

Theorem 2. The additive group S∗ space under � is a vector space over C

with scalar multiplication ].

Proof. Let α, β ∈ C and v, w,∈ S∗. We now establish the four properties of a

vector space.

α ] (v � w) = log(α)⊕ (v � w)(i.)

= [log(α)⊕ v]� [log(α)⊕ w]

= (α ] v)� (α ] w).

(α⊕ β) ] v = log(α+ β)⊕ v(ii.)

= [log(α)� log(β)]⊕ v
= [log(α)⊕ v]� [log(β)⊕ w]

= (α ] v)� (β ] w).

α ] (β ] v) = log(α)⊕ [log(β)⊕ v](iii.)

= log(αβ)⊕ v
= (αβ) ] v.

1 ] v = log(1)⊕ v(iv.)

= v.
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Again, by [1] we know that since the system inputs constitute a vector space

of complex numbers under addition and ordinary scalar multiplication and that

the system outputs constitute a vector space under �, the subaddition, and ],

the scalar multiplication, then all systems of this class can be represented as a

cascade of three systems where D+, or log(·) transforms a product or a sum into a

conventional linear system L, and (D⊕)−1 is exp(·).

Figure 4.

Some systems can be modeled as products. For example, a channel’s fading

can be modeled as the product of a slowly varying component and the transmitted

signal. An amplitude-modulated signal can also be represented by the product

of a carrier signal and envelope function. In these systems homomorphic signal

processing for multiplication can be used to determine frequencies. Superposition

is a generalized principle of homomorphic signal processing.

The logarithmic function will transform a system modeled on a product to

a conventional linear system that will yield to a classical attack. But a channel

may or may not be fading. A signal may or may not be an amplitude-modulated

one. It has been shown here that the logarithm, as a generalized superposition,

will also transform a conventional linear system into another linear system, and

therefore, nothing need be known about the system before applying a logarithmic

transformation.
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