SOME IMPROVED RESULTS ON B-RINGS

Amir M. Rahimi

Abstract

In this work, all rings are commutative rings with identity. Let R be a ring and $J(R)$ denote the Jacobson radical of R. A sequence $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 1$, of elements in R is said to be unimodular if 1 is in the ideal $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right)$. A ring R is said to be a B-ring, whenever for any unimodular sequence $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 2$, of elements in R with $\left(a_{1}, a_{2}, \ldots, a_{s-1}\right) \not \subset J(R)$, there exists an element b in R such that $\left(a_{1}, a_{2}, \ldots, a_{s}+b a_{s+1}\right)=R$. Besides some other results, two basic facts about B-rings will be proved and they are: 1) R is a B-ring if and only if for any unimodular sequence $\left(a_{1}, a_{2}, a_{3}\right)$ of elements in R with a_{1} not in $J(R)$, there exists an element b in R such that $\left(a_{1}, a_{2}+b a_{3}\right)=R$, and 2) A homomorphic image of a B-ring is again a B-ring. At the end, some applications of these results will be discussed.

1. Introduction. The main purpose of this paper which will be discussed in section 2 of this work, is to provide a simpler alternative proof to some results of section 2 in [1] and also to generalize some results of that section in [1].

Throughout this paper all rings are commutative rings with identity. For a ring R, let $J(R)$ denote the Jacobson radical of R and define a sequence $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 1$, of elements in R to be unimodular, whenever 1 is in the ideal $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right)$. Notice that without having any confusion in the context, parentheses will be used to show both the sequence $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right)$ of elements in R and the ideal $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right)$ generated by $a_{1}, a_{2}, \ldots, a_{s}, a_{s+1} \in$ R. A ring R is said to be a B-ring, whenever for any unimodular sequence $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 2$, of elements in R with $\left(a_{1}, a_{2}, \ldots, a_{s-1}\right) \not \subset J(R)$, there exists an element b in R such that $\left(a_{1}, a_{2}, \ldots, a_{s}+b a_{s+1}\right)=R$. For more information on B-rings see [1] and also for a generalization of B-rings (B-type-rings) see the dissertation of the author [2].

2. Main Results.

Theorem 1. Let $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 1$, be a unimodular sequence in R, then $\left(a_{1}, a_{2}, \ldots, a_{s}+a_{s+1}\right)=R$, whenever a_{s} or a_{s+1} is in $J(R)$.

Proof. Here we just give a proof to the case when $a_{s} \in J(R)$ and the proof of the other case which is similar, is left to the reader. Assume $A=\left(a_{1}, a_{2}, \ldots, a_{s}+\right.$ $\left.a_{s+1}\right) \neq R$. Then there exists a maximal ideal M of R such that $A \subset M$. Now $a_{s} \in J(R) \subset M$ and $a_{s}+a_{s+1} \in M$ imply $a_{s+1} \in M$ and this makes $R=$ $\left(a_{1}, a_{2}, \ldots, a_{s+1}\right) \subset M$, which is a contradiction.

Theorem 2. A ring R is a B-ring if and only if for any unimodular sequence $\left(a_{1}, a_{2}, a_{3}\right)$ in R with $a_{1} \notin J(R)$, there exists an element $b \in R$ such that $\left(a_{1}, a_{2}+\right.$ $\left.b a_{3}\right)=R$.

Proof. The necessary part is quite clear. To prove the sufficient part, let $\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right), s \geq 2$, be a unimodular sequence in R with the condition $\left(a_{1}, a_{2}, \ldots, a_{s-1}\right) \not \subset J(R)$. Without loss of generality, assume $a_{1} \notin J(R)$. Now, $1 \in\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1}\right)$ implies $1=\sum_{i=1}^{s+1} a_{i} x_{i}$ for some $x_{1}, x_{2}, \ldots, x_{s}, x_{s+1} \in R$. Thus, $1 \in\left(a_{1}, a_{s}, l\right)$, where $l=a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{s-1} x_{s-1}+a_{s+1} x_{s+1}$. Now by the hypothesis there exists $b \in R$ such that $1 \in\left(a_{1}, a_{s}+b l\right) \subset\left(a_{1}, a_{2}, \ldots, a_{s-1}, a_{s}+\right.$ $\left.b x_{s+1} a_{s+1}\right)$.

Theorem 3. A homomorphic image of a B-ring is a B-ring.
Proof. Let A be a nonzero proper ideal of R and $\phi: R \rightarrow R / A$ be the canonical epimorphism of rings. Assume $\left(a_{1}+A, a_{2}+A, \ldots, a_{s}+A, a_{s+1}+A\right)$ is a unimodular sequence in R / A with $\left(a_{1}+A, a_{2}+A, \ldots, a_{s-1}+A\right) \not \subset J(R / A)$, where $s \geq 2$. $1+A \in\left(a_{1}+A, a_{2}+A, \ldots, a_{s}+A, a_{s+1}+A\right)$ implies $1=\sum_{i=1}^{s+1} a_{i} x_{i}+a$ for some $a \in A$ and $x_{1}, x_{2}, \ldots, x_{s}, x_{s+1} \in R$. Now $1 \in\left(a_{1}, a_{2}, \ldots, a_{s}, a_{s+1} x_{s+1}+a\right)$ and since $\phi(J(R))$ is contained in $J(R / A)$, then by the hypothesis there exists $b \in R$ such that $\left(a_{1}, a_{2}, \ldots, a_{s}+b x_{s+1} a_{s+1}+b a\right)=R$, which implies $\left(a_{1}+A, a_{2}+A, \ldots, a_{s}+\right.$ $\left.b x_{s+1} a_{s+1}+A\right)=R / A$.

Remark. By applying Theorem 2 in the proof of the above theorem, it suffices to make the argument only for the unimodular sequences of the form $\left(a_{1}+A, a_{2}+\right.$ $\left.A, a_{3}+A\right)$ with $a_{1}+A \notin J(R / A)$.
3. Some Applications of the Above Results. For a ring R and any element $a \in R$, let $Z(a)$ denote the set of all maximal ideals of R, where each contains the element a. A ring R is said to be Bezoutian or an F-ring, if every finitely generated ideal in R is a principal ideal in R.

Remark. R in Lemma 2.2 of [1] does not need to be an F-ring and actually, as a stronger alternative of this lemma, we can apply Theorem 2 above. Consequently,
in Theorem 2.4 of [1] there is no need to show or mention that R is an F-ring. Also, we exclude the Bezoutian condition from the hypothesis of Theorem 2.3 in [1] and state it in the following general form.

Theorem 4. If R is a ring which satisfies the condition that for every $a, c \in R$ with $a \notin J(R)$, there exists an $r \in R$ such that $Z(R)=Z(a)-Z(c)$, then R is a B-ring.

Proof. The proof follows from Theorem 2 above and the argument in the proof of Theorem 2.3 in [1].

Next, by applying Theorem 3 above, a simpler alternative proof can be provided to Theorem 2.6 and to the necessity part of Lemma 2.1 in [1].

Theorem 5. Let D be an integral domain, K its quotient field. Let $R=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{k}, a, a, \ldots\right) \mid a_{i} \in K, a \in D\right\}$, where k is a nonnegative integer (k may be different for distinct elements in R). The operations in R are component-wise addition and multiplication. If R is a B-ring, then D is a B-domain.

Proof. Since D is a homomorphic image of R under the mapping given by $\left(a_{1}, a_{2}, \ldots, a_{k}, a, a, \ldots\right) \mapsto a$, the proof is immediate by Theorem 3.

Remark. By Theorem 2 above, the illustration of the proof of Theorem 2.6 in [1] is actually a complete proof of that theorem.

Finally, as an application of Theorem 3 to the necessity part of Lemma 2.1 in [1], which states "for any nonzero proper ideal $A \subset J(R), R$ is a B-ring if and only if R / A is a B-ring," we can conclude that R / A is a B-ring for any nonzero proper ideal A of R, whenever R is a B-ring.

References

1. M. Moore and A. Steger, "Some Results on Completability in Commutative Rings," Pacific Journal of Mathematics, 37 (1971), 453-460.
2. A. M. Rahimi, Some Results on Stable Range in Commutative Rings, Ph. D. dissertation, 1993, University of Texas at Arlington.

Amir M. Rahimi
901 Carro Dr. \# 4
Sacramento, CA 95825

