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SOME IMPROVED RESULTS ON B-RINGS

Amir M. Rahimi

Abstract. In this work, all rings are commutative rings with identity.

Let R be a ring and J(R) denote the Jacobson radical of R. A sequence

(a1, a2, . . . , as, as+1), s ≥ 1, of elements in R is said to be unimodular if 1

is in the ideal (a1, a2, . . . , as, as+1). A ring R is said to be a B-ring, when-

ever for any unimodular sequence (a1, a2, . . . , as, as+1), s ≥ 2, of elements in

R with (a1, a2, . . . , as−1) 6⊂ J(R), there exists an element b in R such that

(a1, a2, . . . , as + bas+1) = R. Besides some other results, two basic facts about

B-rings will be proved and they are: 1) R is a B-ring if and only if for any uni-

modular sequence (a1, a2, a3) of elements in R with a1 not in J(R), there exists

an element b in R such that (a1, a2 + ba3) = R, and 2) A homomorphic image of

a B-ring is again a B-ring. At the end, some applications of these results will be

discussed.

1. Introduction. The main purpose of this paper which will be discussed in

section 2 of this work, is to provide a simpler alternative proof to some results of

section 2 in [1] and also to generalize some results of that section in [1].

Throughout this paper all rings are commutative rings with identity. For

a ring R, let J(R) denote the Jacobson radical of R and define a sequence

(a1, a2, . . . , as, as+1), s ≥ 1, of elements in R to be unimodular, whenever 1 is

in the ideal (a1, a2, . . . , as, as+1). Notice that without having any confusion in the

context, parentheses will be used to show both the sequence (a1, a2, . . . , as, as+1) of

elements in R and the ideal (a1, a2, . . . , as, as+1) generated by a1, a2, . . . , as, as+1 ∈

R. A ring R is said to be a B-ring, whenever for any unimodular sequence

(a1, a2, . . . , as, as+1), s ≥ 2, of elements in R with (a1, a2, . . . , as−1) 6⊂ J(R), there

exists an element b in R such that (a1, a2, . . . , as + bas+1) = R. For more informa-

tion on B-rings see [1] and also for a generalization of B-rings (B-type-rings) see

the dissertation of the author [2].

2. Main Results.

Theorem 1. Let (a1, a2, . . . , as, as+1), s ≥ 1, be a unimodular sequence in R,

then (a1, a2, . . . , as + as+1) = R, whenever as or as+1 is in J(R).
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Proof. Here we just give a proof to the case when as ∈ J(R) and the proof of

the other case which is similar, is left to the reader. Assume A = (a1, a2, . . . , as +

as+1) 6= R. Then there exists a maximal ideal M of R such that A ⊂ M . Now

as ∈ J(R) ⊂ M and as + as+1 ∈ M imply as+1 ∈ M and this makes R =

(a1, a2, . . . , as+1) ⊂ M , which is a contradiction.

Theorem 2. A ring R is a B-ring if and only if for any unimodular sequence

(a1, a2, a3) in R with a1 6∈ J(R), there exists an element b ∈ R such that (a1, a2 +

ba3) = R.

Proof. The necessary part is quite clear. To prove the sufficient part, let

(a1, a2, . . . , as, as+1), s ≥ 2, be a unimodular sequence in R with the condition

(a1, a2, . . . , as−1) 6⊂ J(R). Without loss of generality, assume a1 6∈ J(R). Now,

1 ∈ (a1, a2, . . . , as, as+1) implies 1 =
∑s+1

i=1 aixi for some x1, x2, . . . , xs, xs+1 ∈ R.

Thus, 1 ∈ (a1, as, l), where l = a2x2+a3x3+ · · ·+as−1xs−1+as+1xs+1. Now by the

hypothesis there exists b ∈ R such that 1 ∈ (a1, as + bl) ⊂ (a1, a2, . . . , as−1, as +

bxs+1as+1).

Theorem 3. A homomorphic image of a B-ring is a B-ring.

Proof. Let A be a nonzero proper ideal of R and φ:R → R/A be the canonical

epimorphism of rings. Assume (a1+A, a2+A, . . . , as+A, as+1+A) is a unimodular

sequence in R/A with (a1 + A, a2 + A, . . . , as−1 + A) 6⊂ J(R/A), where s ≥ 2.

1 +A ∈ (a1 +A, a2 +A, . . . , as +A, as+1 +A) implies 1 =
∑s+1

i=1 aixi + a for some

a ∈ A and x1, x2, . . . , xs, xs+1 ∈ R. Now 1 ∈ (a1, a2, . . . , as, as+1xs+1+a) and since

φ(J(R)) is contained in J(R/A), then by the hypothesis there exists b ∈ R such

that (a1, a2, . . . , as + bxs+1as+1 + ba) = R, which implies (a1 +A, a2 +A, . . . , as +

bxs+1as+1 +A) = R/A.

Remark. By applying Theorem 2 in the proof of the above theorem, it suffices

to make the argument only for the unimodular sequences of the form (a1 +A, a2 +

A, a3 +A) with a1 +A 6∈ J(R/A).

3. Some Applications of the Above Results. For a ring R and any

element a ∈ R, let Z(a) denote the set of all maximal ideals of R, where each

contains the element a. A ring R is said to be Bezoutian or an F -ring, if every

finitely generated ideal in R is a principal ideal in R.

Remark. R in Lemma 2.2 of [1] does not need to be an F -ring and actually, as

a stronger alternative of this lemma, we can apply Theorem 2 above. Consequently,
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in Theorem 2.4 of [1] there is no need to show or mention that R is an F -ring. Also,

we exclude the Bezoutian condition from the hypothesis of Theorem 2.3 in [1] and

state it in the following general form.

Theorem 4. If R is a ring which satisfies the condition that for every a, c ∈ R

with a 6∈ J(R), there exists an r ∈ R such that Z(R) = Z(a) − Z(c), then R is a

B-ring.

Proof. The proof follows from Theorem 2 above and the argument in the proof

of Theorem 2.3 in [1].

Next, by applying Theorem 3 above, a simpler alternative proof can be pro-

vided to Theorem 2.6 and to the necessity part of Lemma 2.1 in [1].

Theorem 5. Let D be an integral domain, K its quotient field. Let R =

{(a1, a2, . . . , ak, a, a, . . . ) | ai ∈ K, a ∈ D}, where k is a nonnegative integer (k may

be different for distinct elements in R). The operations in R are component-wise

addition and multiplication. If R is a B-ring, then D is a B-domain.

Proof. Since D is a homomorphic image of R under the mapping given by

(a1, a2, . . . , ak, a, a, . . . ) 7→ a, the proof is immediate by Theorem 3.

Remark. By Theorem 2 above, the illustration of the proof of Theorem 2.6 in

[1] is actually a complete proof of that theorem.

Finally, as an application of Theorem 3 to the necessity part of Lemma 2.1 in

[1], which states “for any nonzero proper ideal A ⊂ J(R), R is a B-ring if and only

if R/A is a B-ring,” we can conclude that R/A is a B-ring for any nonzero proper

ideal A of R, whenever R is a B-ring.
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