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A DEVELOPMENT OF EULER NUMBERS

Joseph B. Dence

The Euler polynomials, {En(x)}
∞

n=0, are the unique polynomials with the prop-
erty

xn =
En(x+ 1) + En(x)

2
, x ∈ R.

This definition leads to the differential equation (E′

n − nEn−1)(x) = 0, and hence,
to a complete determination of the En(x)’s. It is known that when n is odd, 1/2 is
a zero of En(x) [7]. The sequence of Euler numbers, {E2n}

∞

n=0, is then defined by

E2n = 22nE2n(1/2).

The first 8 Euler numbers are given in Table 1 [5]. In general, the En’s increase
continuously and rapidly in magnitude, and their algebraic signs alternate.

It is of some practical interest to have a closed form for the Euler numbers.
The closely related Bernoulli numbers, for example, can each be represented by an
infinite series of reciprocals of various integral powers of the positive integers

B2n = (−1)n−1 2(2n)!

(2π)2n

∞
∑

k=1

1/k2n.

n E2n

0 1

1 −1

2 5

3 −61

4 1385

5 −50, 521

6 2, 702, 765

7 −199, 360, 981

Table 1. The First 8 Euler Numbers.
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Methods for proving this commonly employ non-elementary facts from analysis [3];
for example, one such proof begins with the infinite product formula for sinx

sinx

x
=

∞
∏

k=1

[1− (x2/k2π2)], |x| < ∞.

There are similar non-elementary methods for deriving analogous closed forms for
the Euler numbers. In this paper we show how only calculus can be used to obtain
infinite series representations of the Euler numbers. Our treatment is motivated by
Berndt’s work on the Bernoulli numbers [4].

1. The Even-Indexed Euler Polynomials. We shall need one basic fact
about the polynomials E2n(x). From the definition of the Euler polynomials, one
can obtain a generating function

2ext

et + 1
=

∞
∑

n=0

En(x)
tn

n!
.

In this, replacing t by −t and setting x = 0, we obtain

∞
∑

n=0

En(0)
(−t)n

n!
=

2

e−t + 1
=

2et

et + 1
=

∞
∑

n=0

En(1)
tn

n!
.

Within the interval of convergence, we can subtract the two series in the last line
term-by-term to give

∞
∑

n=0

tn

n!

(

En(1)− En(0)(−1)n
)

= 0.

As t is arbitrary, we obtain for even indices E2n(1)−E2n(0) = 0. But E2n(1+x)+
E2n(0) = 2x2n and for x = 0 this gives E2n(1) + E2n(0) = 0. Combination with
the previous equation yields, finally, E2n(0) = E2n(1) = 0.

2. Two Lemmas. The general idea of the proof is to concoct a special
function of E2n(x) and E2n, integrate this function together with sin(πkx) (k =
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integer), and then sum over some suitable subset of the k’s. The next two lemmas
are required.

Lemma 1. If j is a positive integer and cos θ 6= 0, then

S = sin θ − sin 3θ + sin 5θ − · · ·+ sin(4j + 1)θ =
sin(4j + 2)θ

2 cos θ
.

Proof.

S = Im
(

eiθ − e3iθ + e5iθ − · · ·+ e(4j+1)iθ
)

= Im

(

eiθ(1−
(

−e2iθ)2j+1
)

1− (−e2iθ)

)

= Im

(

e(4j+3)iθ + eiθ

e2iθ + 1
·
e−2iθ + 1

e−2iθ + 1

)

= Im

(

e(4j+1)iθ + e−iθ + e(4j+3)iθ + eiθ

2 + 2 cos 2θ

)

=
sin(4j + 1)θ − sin θ + sin(4j + 3)θ + sin θ

2(1 + cos 2θ)

=
2 sin(4j + 2)θ cos θ

4 cos2 θ

=
sin(4j + 2)θ

2 cos θ
.

The next lemma is a special case of a more general theorem known in the
literature as the Riemann-Lebesgue Lemma [1, 2, 11].

Lemma 2. If F (θ) is twice continuously differentiable on [a, b], F (a) = 0, and
cos θ has no zero in (a, b], then

lim
N→∞

∫ b

a

F (θ)
sinNθ

cos θ
dθ = 0.
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Proof. Let g(θ) = F (θ)/ cos θ. Then

(∗)

∫ b

a

g(θ) sinNθdθ = −g(θ)
cosNθ

N

∣

∣

∣

∣

b

a

+

∫ b

a

g′(θ)
cosNθ

N
dθ.

If cos θ 6= 0 at θ = a, then g(θ) is finite there. By hypothesis, g(θ) is finite at θ = b
also, so the integrated term in (∗) approaches 0 as N → ∞.

If cos a = 0, then by L’Hôpital’s Rule

lim
θ→a+

g(θ) = lim
θ→a+

F ′(θ)

− sin θ
,

provided the latter limit exists. But this limit does exist because F (θ) is continu-
ously differentiable at θ = a and sin a 6= 0. Hence, the integrated term in (∗) again
approaches 0 as N → ∞.

Again, if cos θ 6= 0 at θ = a, then

g′(θ) =
cos θF ′(θ) + sin θF (θ)

cos2 θ

is defined there and the integrand on the right-hand side of (∗) is continuous on
[a, b]. Hence, the integral approaches 0 as N → ∞.

On the other hand, if cos a = 0, we have

lim
θ→a+

g′(θ) = lim
θ→a+

− sin θF ′(θ) + cos θF ′′(θ) + cos θF (θ) + sin θF ′(θ)

−2 cos θ sin θ

= lim
θ→a+

F (θ) + F ′′(θ)

−2 sin θ

= −
1

2

F ′′(a)

sin a
,

because F (θ) is twice continuously differentiable on [a, b] and sin a 6= 0. So the
integrand in (∗) is again continuous on [a, b] and the integral approaches 0 as N →
∞.
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3. The Main Theorem. To begin the proof of the main result, we define
the following function

G(x) =
22nE2n(x)

E2n
− 1,

and we choose the interval of integration to be 1/2 ≤ x ≤ 1. We note that G(1/2) =
0, and also that G(1) = −1, in view of the discussion in Section 1. We also recall
(from the opening remarks) that E′

n(x) = nEn−1(x).

Theorem 1. If n is a positive integer, then

E2n = 2(−1)n(2/π)2n+1(2n)!

∞
∑

j=0

(−1)j

(2j + 1)2n+1
.

Proof. Let K be an odd integer; integration by parts gives

∫ 1

1/2

G(x) sinπKxdx = −
cosπKx

πK
G(x)

∣

∣

∣

∣

1

1/2

+
22n

E2n

∫ 1

1/2

cosπKx

πK
E′

2n(x)dx

=
−1

πK
+

22n(2n)

πKE2n

∫ 1

1/2

E2n−1(x) cosπKxdx

=
−1

πK
+

22n(2n)

πKE2n

(

sinπKx

πK
E2n−1(x)

∣

∣

∣

∣

1

1/2

−

∫ 1

1/2

sinπKx

πK
E′

2n−1(x)dx

)

=
−1

πK
−
22n(2n)(2n− 1)

(πK)(πK)E2n

∫ 1

1/2

E2n−2(x) sinπKxdx.

After 2n− 2 more integrations by parts, we obtain

∫ 1

1/2

G(x) sin πKxdx =
−1

πK
+

(−1)n22n(2n)!

(πK)2nE2n

∫ 1

1/2

E0(x) sin πKxdx

=
−1

πK
+

(−1)n22n(2n)!

(πK)2n+1E2n
,
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because E0(x) = 1.
Now let K = K(k) = (−1)(k−1)/2k, and sum both sides of the last equation

over all the odd k’s from k = 1 to k = 4j + 1

∫ 1

1/2

G(x)

( 4j+1
∑

k=1
k=odd

sinπKx

)

dx = −
1

π

4j+1
∑

k=1
k=odd

1

K
+

(−1)n22n(2n)!

E2n

4j+1
∑

k=1
k=odd

1

(πK)2n+1
.

Application of Lemma 1 to this yields

1

2

∫ 1

1/2

G(x)
sin(4j + 2)πx

cosπx
dx = −

1

π

4j+1
∑

k=1
k=odd

1

K
+

(−1)n22n(2n)!

E2n

4j+1
∑

k=1
k=odd

1

(πK)2n+1
.

On the left-hand side, let θ = πx, F (θ) = G(x), N = 4j + 2; the integral becomes

1

2π

∫ π

π/2

F (θ)
sinNθ

cos θ
dθ.

The integrand satisfies all of the hypotheses in Lemma 2, so upon passage to the
limit j → ∞, we obtain

0 = −
1

π

∞
∑

k=1
k=odd

1

K
+

(−1)n22n(2n)!

E2n

∞
∑

k=1
k=odd

1

(πK)2n+1
.

The first series is just Gregory’s series for Tan−11 [10]. In the second series, let
k = 2j + 1 and replace K by (−1)j(2j + 1). We obtain

0 = −
1

4
+

(−1)n22n(2n)!

π2n+1E2n

∞
∑

j=0

(−1)j

(2j + 1)2n+1

and the theorem follows by a simple rearrangement.
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The theorem permits an asymptotic estimate of the E2n’s and also of their
rate of growth.

Corollary. As n → ∞, we have |E2n| ∼ 8
√

(n/π)(4n/(πe))2n and

|E2n+2/E2n| ∼ (4(n+ 1)/π)2.

Proof. Let Zn =
∑

∞

j=0(−1)j/(2j + 1)2n+1. Clearly 1 − 1/32n+1 < Zn < 1,
so Zn ∼ 1 as n → ∞. From Stirling’s approximation [6, 8, 9] we have (2n)! ∼
√

2π(2n)(2n)2ne−2n as n → ∞. Hence, using these asymptotic results in the series
given in Theorem 1, we obtain

|E2n| ∼ 2
√

2π(2n)(2n)2ne−2n(2/π)2n+1

∼ 8(n/π)1/2(4n/(πe))2n.

Finally, making use of the result ((n+ 1)/n)2n ∼ e2, we have

|E2n+2/E2n| ∼
√

(n+ 1)/n(4(n+ 1)/(πe))2n+2(πe/4n)2n

∼
16(n+ 1)2

π2

=

(

4(n+ 1)

π

)2

.

n |E2n+2/E2n| (4(n+ 1)/π)2

1 5 6.48

3 22.71 25.94

5 53.50 58.36

7 97.27 103.75

Table 2. Asymptotic Estimation of the
Growth of the Euler Numbers.
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Table 2 shows how well the asymptotic formula agrees with the exact values
for the ratios |E2n+2/E2n|; at n = 7, for example, the percent error is about 6.7%.
At n = 29, the percent error drops to about 1.7%.
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