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TWO SOLUTIONS OF ONE PROBLEM OF B. S. POPOV

Kostadin G. Trencevski and Ice B. Risteski

In this paper are given two solutions of the problem of Prof. B. S. Popov [1].

1. The Problem of Prof. B. S. Popov. In [1], Prof. Popov formulates the

following problem.

Prove that the determinant Dn = |aij |, where

aij = 0, (j = i+ s, s > 1); aij = 1, (j = i+ 1);

aij = a, (i = j) and aij = 2i− 2, (j = i− 1),

satisfies the following identities:

(i) Dn =

⌊n/2⌋
∑

k=0

(−1)k ·
n!

k!
·

an−2k

(n− 2k)!
,

(ii) D2
n = 2n · n! ·

n
∑

k=0

(

n

k

)

·
D2k

2k · k!
.

2. First Solution of the Problem. The given determinant is

Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a 1 0 · · · 0 0 0
2 a 1 · · · 0 0 0
0 4 a · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · a 1 0
0 0 0 · · · 2n− 4 a 1
0 0 0 · · · 0 2n− 2 a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Developing it by the last column, we obtain the recurrent formula

(1) Dn = aDn−1 − (2n− 2)Dn−2.
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Note that D1 = a and D2 = a2 − 2, and putting D0 = 1 and D−1 = 0, we obtain

that (1) holds for n ≥ 1. The proof of (i) and (ii) is by induction of n, and (i) will

not be used in the proof of (ii).

Proof of (i). It is easy to verify that (i) holds for n = 1 and n = 2. Assume

that (i) holds for the numbers n− 1 and n− 2, (n > 2). Then

Dn = aDn−1 − (2n− 2)Dn−2 = a ·

⌊(n−1)/2⌋
∑

k=0

(−1)k ·
(n− 1)!

k!
·

an−2k−1

(n− 2k − 1)!

− (2n− 2) ·

⌊(n−2)/2⌋
∑

k=0

(−1)k ·
(n− 2)!

k!
·

an−2k−2

(n− 2k − 2)!

=

⌊(n−1)/2⌋
∑

k=0

(−1)k ·
(n− 1)!

k!
·

an−2k

(n− 2k − 1)!

− 2 ·

⌊(n−2)/2⌋
∑

k=0

(−1)k ·
(n− 1)!

k!
·

an−2k−2

(n− 2k − 2)!

=

⌊(n−1)/2⌋
∑

k=0

(−1)k ·
(n− 1)!

k!
·

an−2k

(n− 2k − 1)!

+ 2 ·

⌊n/2⌋
∑

k=1

(−1)k−1 ·
(n− 1)!

(k − 1)!
·

an−2k

(n− 2k)!

=

⌊n/2⌋
∑

k=0

(−1)k ·
(n− 1)!

k!
·

an−2k

(n− 2k)!
[(n− 2k) + 2k]

=

⌊n/2⌋
∑

k=0

(−1)k ·
n!

k!
·

an−2k

(n− 2k)!
,
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and (i) is proved.

Proof of (ii). In order to prove (ii) by induction of n, D2
n should be expressed

by D2
n−1, D2

n−2, . . . analogously as in (1). Indeed, we will prove the following

identity.

(2) D2
n = (a2−2n+2)D2

n−1− (2n−2)(a2−2n+2)D2
n−2+(2n−2)(2n−4)2D2

n−3,

for n ≥ 4.

The identity (1) implies

D2
n = a2D2

n−1 + 4(n− 1)2D2
n−2 − 2(2n− 2)aDn−1Dn−2.

On the other side,

aDn−1Dn−2 = Dn−1[Dn−1 + (2n− 4)Dn−3] = D2
n−1 + (2n− 4)Dn−1Dn−3.

The identity

Dn−1 + (2n− 4)Dn−3 = aDn−2

implies

D2
n−1 + (2n− 4)2D2

n−3 + 2(2n− 4)Dn−1Dn−3 = a2D2
n−2,

(2n− 4)Dn−1Dn−3 =
1

2
[a2D2

n−2 −D2
n−1 − (2n− 4)2D2

n−3].

Hence,

aDn−1Dn−2 = D2
n−1 +

1

2
[a2D2

n−2 −D2
n−1 − (2n− 4)2D2

n−3]

=
1

2
[a2D2

n−2 +D2
n−1 − (2n− 4)2D2

n−3],

D2
n = a2D2

n−1 + 4(n− 1)2D2
n−2 − (2n− 2)[a2D2

n−2 +D2
n−1 − (2n− 4)2D2

n−3]

= (a2 − 2n+ 2)D2
n−1 − (2n− 2)(a2 − 2n+ 2)D2

n−2 + (2n− 2)(2n− 4)2D2
n−3
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and (2) is proved. We should also prove the following identity.

(3) a2Dn−2 = Dn + (4n− 6)Dn−2 + (2n− 4)(2n− 6)Dn−4,

for n ≥ 5. Indeed,

Dn = aDn−1 − (2n− 2)Dn−2 = a[aDn−2 − (2n− 4)Dn−3]− (2n− 2)Dn−2

= a2Dn−2 − (2n− 2)Dn−2 − (2n− 4)aDn−3

= a2Dn−2 − (2n− 2)Dn−2 − (2n− 4)[Dn−2 + (2n− 6)Dn−4]

= a2Dn−2 − (4n− 6)Dn−2 − (2n− 4)(2n− 6)Dn−4

and (3) is proved.

The identity (3) implies the following identity.

D2k(a
2 − 2n+ 2) = D2(k+1) + (8k + 2)D2k + 4k(4k − 2)D2(k−1) − (2n− 2)D2k

= D2(k+1) + (8k + 4− 2n)D2k + 4k(4k − 2)D2(k−1).

Using this identity and (3), we are able to prove (ii).

It is easy to verify (ii) for n = 1, 2, 3, 4. Assume that (ii) holds for the numbers

n− 1, n− 2 and n− 3, (n ≥ 5). Let us denote

Ai
j =

(

i

j

)

· 2i−j ·
i!

j!

for i ∈ N and 0 ≤ j ≤ i. By algebraic transformations, the following identity

An−1
k−1 + (8k + 4− 2n)An−1

k + 4(k + 1)(4k + 2)An−1
k+1

−(2n− 2)An−2
k−1 − (2n− 2)(8k + 4− 2n)An−2

k − (2n− 2)4(k + 1)(4k + 2)An−2
k+1

+ (2n− 2)(2n− 4)2An−3
k = An

k



144 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

can be proved. Indeed, multiplying it by

[(k + 1)!]2 · (n− k)!

[(n− 2)!]2
· 2k−n

one obtains polynomial equality of n and k, and by direct calculation it can be

verified. Using this identity, the inductive assumptions and the identity (2), we

obtain

D2
n = (a2 − 2n+ 2)D2

n−1 − (2n− 2)(a2 − 2n+ 2)D2
n−2 + (2n− 2)(2n− 4)2D2

n−3

=

n−1
∑

k=0

An−1
k D2k(a

2 − 2n+ 2)−

n−2
∑

k=0

An−2
k D2k(a

2 − 2n+ 2)(2n− 2)

+

n−3
∑

k=0

An−3
k D2k(2n− 2)(2n− 4)2

=

n−1
∑

k=0

An−1
k [D2(k+1) + (8k + 4− 2n)D2k + 4k(4k − 2)D2(k−1)]

−

n−2
∑

k=0

An−2
k (2n− 2)[D2(k+1) + (8k + 4− 2n)D2k + 4k(4k − 2)D2(k−1)]

+

n−3
∑

k=0

An−3
k (2n− 2)(2n− 4)2D2k
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=

n
∑

k=0

D2k[A
n−1
k−1 + (8k + 4− 2n)An−1

k + 4(k − 1)(4k + 2)An−1
k+1

− (2n− 2)An−2
k−1 − (2n− 2)(8k + 4− 2n)An−2

k − (2n− 2)4(k + 1)(4k + 2)An−2
k+1

+An−3
k (2n− 2)(2n− 4)2] =

n
∑

k=0

An
k ·D2k.

Hence (ii) is proved.

3. Second Solution of the Problem. Now we will prove the identities (i)

and (ii) using the properties of the Hermite polynomials.

(i) In the theory of the special functions [2], the Hermite polynomial

(4) Hn(x) =

⌊n/2⌋
∑

k=0

(−1)k
n!(2x)n−2k

k!(n− 2k)!
,

of nth degree satisfies the following equality

(5) Hn(x) = 2xHn−1(x)− (2n− 2)Hn−2(x).

Since (4) is uniquely determined by (5) with the initial conditions H1(x) = 2x and

H2(x) = 4x2 − 2, by putting x = a/2 from (1), (4) and (5) we obtain

Dn = Hn(a/2) =

⌊n/2⌋
∑

k=0

(−1)k
n!an−2k

k!(n− 2k)!
,

and (i) is proved.

(ii) Starting from the known identity of E. Feldheim [3],

(6) Hm(x)Hn(x) = 2nn!
n
∑

k=0

(

m

n− k

)

1

2kk!
Hm−n+2k(x), (m ≥ n)
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for product of Hermite polynomials, for m = n we obtain

(7) H2
n(x) = 2nn!

n
∑

k=0

(

n

n− k

)

1

2kk!
H2k(x).

Since Dn satisifies the recurrent formula (1), and also (5) for x = a/2, then from

(7) it follows

D2
n = H2

n(a/2) = 2nn!

n
∑

k=0

(

n

k

)

1

2kk!
D2k,

and (ii) is proved.

Remark. There are more forms for the product of the Hermite polynomials

[4,5,6,7,8,9], and hence, different proofs for (ii). For example using the equation

Hm(x)Hn(x) =

n
∑

r=0

2rr!

(

m

r

)(

n

r

)

Hm+n−2r(x), (m ≥ n)

of G. N. Watson [4], for m = n we obtain

(8) D2
n = H2

n(a/2) =

n
∑

r=0

2rr!

(

n

r

)2

D2n−2r.

Exchanging n− r by k in the left side of (8), we obtain (ii).
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