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A CHARACTERIZATION OF ULTRAFILTERS

IN COMPLEMENTARY TOPOLOGIES

Rahim G. Karimpour

Abstract. A topology τ on a non-empty set X is called a complementary

topology if each open set U in τ , its complement X − U is also in τ . These

topologies, maximal ideals and their relation to ultrafilters were characterized by

this author. In this paper, the structure of filters in τ are investigated. Finally, the

ultrafilters are characterized.

1. Introduction. Let τ be a topology on a set X . Then τ is called a

complementary topology (comp-topology) if for each U ∈ τ , its complementary

X−U is also in τ . Since complementary topologies are the only topologies that form

a Boolean ring under the usual operations, these spaces along with their maximal

ideals have been characterized in [4]. This may be a result of some interest due to

the many applications of Boolean rings to such fields as logic and switching circuits.

In [5], the relation between maximal ideals in Boolean rings and ultrafilters in τ

have been characterized. In this article, the structure of filters in τ are investigated.

Finally, the ultrafilters in these topologies independent of ideals are characterized.

2. Complementary Topology. The following lemmas and theorem have

been proved in [4] and [5].

Lemma 1. In a comp-topology, the intersection of an arbitrary collection of

open sets is an open set.

Note that the converse of this lemma is not true. For example, see [5].

Lemma 2. If τ is a non-trivial comp-topology on a set X , then τ admits a

unique basis B(τ) which forms a partition for the space X . This partition is called

a disjoint basis.

Lemma 3. If the topology τ on a set X admits a basis which forms a partition

for X , then τ is a comp-topology.

Lemmas 2 and 3 have been employed to prove the following theorem, which

characterizes comp-topological spaces.
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Theorem 1. Let τ be a non-trivial topology on a set X , then τ is a comp-

topology if and only if τ admits a unique basis that forms a partition for the set

X .

Example. Let X be the set of real numbers R and

B(τ) = {
[

n, n+ 1
)

: n is an integer }.

It is easy to see that X is a complementary topology with B(τ) as its unique basis.

3. Filters and Ultrafilters. Let τ be a non-trivial comp-topology on a set

X with a disjoint basis

B(τ) = {Uα : α ∈ A}.

We define a filter in τ as follows.

Definition 1. A non-empty subset F of the topology τ is called a comp-filter

or simply filter if i) U ⊆ V where U, V ∈ τ and U ∈ F , then V ∈ F ; and ii) For

any U, V ∈ F , U ∩ V ∈ F . A filter is said to be an ultrafilter or a maximal filter if

F ⊂ τ and F is not contained in any other filter in τ .

To characterize the filters in τ , we first observe that by Theorem 1, there is a

unique disjoint basis

B(τ) = {Uα : α ∈ A}

for τ , where A is an index set for the elements in the partition. Now, for each

subcollection of indices A0 ⊆ A, let F (A0) be the set consisting of all those X−Uα’s

with α ∈ A0 together with all the finite intersections of those X − Uα’s.

Theorem 2. Let τ be a comp-topology on a set X and

B(τ) = {Uα : α ∈ A}

be a disjoint base for τ . For each filter F in τ , there exists a unique subcollection

A0 of the index set A such that F (A0) ⊆ F . The only sets that are possibly in F ,

but not in F (A0), are those that are intersections of the X − Uα’s, for infinitely

many α’s in A0. F (A0) will be called the associated set of F .

Proof. Let F be a filter and a subset of τ . Let

A0 = {α ∈ A : U ∩ Uα = ∅ for some U ∈ F}.
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Since U ∩ Uα = ∅ for each α ∈ A0 and U ⊆ X − Uα, we see that F contains all

those X − Uα’s with α ∈ A0. Therefore, F (A0) ⊆ F . It is clear that the only sets

that can possibly be in F , but not in F (A0), must be an intersection of X − Uα’s,

for infinitely many α in A. The following theorem will enable us to characterize

the ultrafilters in τ .

Theorem 3. Let τ be a comp-topology on a set X and

B(τ) = {Uα : α ∈ A}

be a disjoint basis for τ . Suppose α0 is a fixed element of A. Then the set

F = {X − U : U ∈ τ and U ∩ Uα0
= ∅}

is an ultrafilter in τ .

Proof. First we show that F is a filter. It is clear that ∅ 6∈ F . Let B and

C be in τ such that B ⊆ C and B ∈ F . Then, there exists a U ∈ τ such that

B = X −U and U ∩Uα0
= ∅. We need to show that there exists a V ∈ τ such that

C = X − V for some V in τ and V ∩ Uα0
= ∅. Let V = U − C = U ∩ (X − C).

By using De Morgan’s Law it is easy to see that X − V = B ∪ C = C. To show

V ∩ Uα0
= ∅, we consider the fact that V ∩ Uα0

= U ∩ (X − C) ∩ Uα0
= ∅. Let

B,C ∈ F . Then there exists a V,W ∈ τ such that B = X − V , C = X −W . Then

B ∩C = X − (V ∪W ), where V ∪W ∈ τ and (V ∪W )∩Uα0
= ∅. Therefore, F is a

filter. To show that F is an ultrafilter, let F ∗ be a filter containing F . Let V be an

arbitrary element in F ∗. Either V ∩ Uα0
= ∅ or V ∩ Uα0

6= ∅. If V ∩ Uα0
= ∅, then

X − V ∈ F ⊂ F ∗; which implies ∅ ∈ F ∗, a contradiction to the fact that F ∗ is a

filter. So V ∩Uα0
6= ∅. But since Uα0

is a basis element from the partition, it follows

that Uα0
⊆ V . Considering that Uα0

= X − (X −Uα0
) and (X −Uα0

)∩Uα0
= ∅, it

follows that Uα0
∈ F . Since F is a filter and Uα0

⊆ V , we can conclude that V ∈ F

and F ∗ = F . This shows that F is an ultrafilter.

We will now characterize all ultrafilters of τ whose associated sets are generated

by the index sets A0 that are proper subsets of A.

Theorem 4. Let τ be a comp-topology on a set X and

B(τ) = {Uα : α ∈ A}
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be a disjoint basis for τ . Suppose F ⊂ τ is a filter whose associated set corresponds

to a proper subset A0 of A. Then F is an ultrafilter of τ if and only if

i. A0 misses exactly one element α0 of A, and

ii. F contains all the possible unions of elements of the set

{X − Uα : α ∈ A0}.

Condition (ii) may be replaced by the equivalent condition.

iii. F contains all the elements of τ that have a non-empty intersection with Uα0
.

Proof. Since τ is a comp-topology, it is easy to see that Conditions ii and iii

are equivalent. Let F be a filter that satisfies the following two conditions.

I. Let F (A0) be the associated set of F , where the index set A0 misses exactly

one element α0 of A.

II. F contains all the possible elements of the topology τ that are non-disjoint

from Uα0
.

We need to show that F is an ultrafilter. If F ∗ is any filter containing F as a

proper subset, then F ∗ must contain a set U such that U 6∈ F and U ∩ Uα0
= ∅.

But this implies U ⊂ X − Uα0
. Since F ∗ is a filter, then X − Uα0

∈ F ∗. By (II),

Uα0
∈ F ⊂ F ∗. This contradicts the fact that ∅ 6∈ F ∗. Therefore, F is an ultrafilter.

Conversely, let F be an ultrafilter with the associated set F (A0) such that

A−A0 contains more than one element or F does not contain all possible X−Uα’s.

Fix an element α0 in A− A0 and let A1 = A − {α0}. Suppose F ∗ is the subset of

τ containing all possible unions of elements of the set

{X − Uα : α ∈ A1}.

It is obvious that F ∗ contains F as a proper subset. Now it suffices to show that F ∗

is a filter. Replacing Condition II by the equivalent Condition iii, then F ∗ contains

all the possible elements of the topology τ that are non-disjoint from Uα0
. It is

straight forward to verify that F ∗ is a filter in τ by using the fact that for any

U ∈ τ , if U ∩ Uα0
6= ∅, then Uα0

⊆ U . Therefore, if A0 is a proper subset of A and

if either condition I or II is not satisfied, then F is not an ultrafilter of τ .

Corollary. Let τ be a comp-topology with a disjoint basis

B(τ) = {Uα : α ∈ A}.



VOLUME 9, NUMBER 2, SPRING 1997 99

If the index set A is finite consisting of n elements, then τ has exactly 2n distinct

filters (including trivial ones) and among these, exactly n of them are ultrafilters.

Proof. If the index set A is finite, it is easy to show that for each subcollection

of indices A0 ⊂ A, F (A0) ∪ {X} is a filter. Moreover if F is an arbitrary filter in

τ , Theorem 2 guarantees a unique subcollection A0 of the index set A such that

F (A0) ⊂ F . Thus, there is a one-to-one correspondence between the filters of τ

and the subsets of A with a filter F corresponding to a subset A0 ⊂ A. As for

ultrafilters, we merely observe that each ultrafilter F of τ must be equal to its

associated set F (A0) where A0 is a proper subset of A. Thus, by Theorem 4, there

is a one-to-one correspondence between the set of all ultrafilters of τ and the index

set A.

For the case in which the index set is infinite and ultrafilters are those as

described in Theorem 3, it is easy to see that there are infinitely many ultrafilters

in this topology.

The following theorem is true in the case that the index set is infinite. Before

we state and prove the theorem, we need a definition.

Definition. Let τ be a comp-topology with a disjoint basis

B(τ) = {Uα : α ∈ A}.

For each subset P of the index set A, we will let

U(P ) =
⋃

{Uα : α ∈ P}

and call it the open set determined by P .

Lemma 4. Let τ be a comp-topology with a disjoint basis

B(τ) = {Uα : α ∈ A}.

Let F be an ultrafilter in τ . Suppose that U(P ) is an open set determined by an

infinite subset P of the index set A such that the set U(P ) belongs to F . Then, for

any partition P = R ∪ S of P into infinite subsets R and S, the filter F contains

exactly one of the open sets U(R) and U(S).

Proof. It is easy to see that F does contain both U(R) and U(S), for otherwise,

being a filter, F would have contained U(R)∩U(S) = ∅. We show that if F contains
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neither U(R) nor U(S), F would not have been an ultrafilter. Suppose F contains

neither U(R) nor U(S). Let F ∗ be a filter generated by F and U(R), i.e.,

F ∗ = {U : U = B ∪ C, B ∈ F and C ⊆ U(R)}.

It is easy to check that F ∗ is a filter. For example, if U ⊆ V and U ∈ F ∗, then

there is a B ∈ F and C ⊆ U(R) such that U = B ∪ C ⊆ V . But B ∪ C ⊆ V

implies that B ⊆ V and C ⊆ V . Since F is also a filter, it follows that V ∈ F

and V = V ∪ C ∈ F ∗. By taking C = ∅, we see that F ∗ ⊃ F . Thus, F ∗ is a filter

containing F as a proper subset. Thus, F cannot be an ultrafilter in τ .

Theorem 5. Let τ be a comp-topology on a set X with a disjoint basis

B(τ) = {Uα : α ∈ A}.

If the index set A is infinite, then there are infinitely many distinct ultrafilters of τ

that contain F (A).

Proof. Since τ is a comp-topology, it is not difficult to show that the set F

consisting of all those X−Uα’s with α ∈ A together with all the finite intersections

of those X − Uα’s and the set X is a filter containing F (A).

By using Zorn’s Lemma, there is at least one ultrafilter F that contains F (A).

Furthermore, since F is also a filter, it does contain the set

X =
⋃

{Uα : α ∈ A} = U(A).

We now show that by the following argument, there are at least two ultrafilters

that contain F (A). Partition the index set A as a union of two disjoint, infinite

subsets A0 and A1. By the preceding lemma, the ultrafilter F must contain exactly

one of the two sets U(A0) and U(A1). Without loss of generality, assume that

U(A0) 6∈ F . We now relabel F as F0 and show that there is a second ultrafilter F1

that contains F (A) and the set U(A0), but not U(A1). First, let F ∗

1 be the filter

generated by F (A) and the set U(A0). Then apply Zorn’s Lemma to obtain an

ultrafilter F1 containing the filter F ∗

1 . Since the ultrafilter F1 already contains the

set U(A0), by the preceding lemma, F1 does not contain the set U(A1). Thus, F0

and F1 are two distinct ultrafilters. Applying the same argument on the sets U(A0)

and U(A1), we now show that there are at least four ultrafilters containing F (A).
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First partition the set A0 into the union of two disjoint infinite subsets A00 and

A01. As before, the ultrafilter F0 must contain exactly one of the sets U(A00) and

U(A01), say, F0 does not contain the set U(A00). Relabeling F0 as F00 and using

Zorn’s Lemma again, we can construct another ultrafilter F01 containing F (A),

but not the sets U(A0) and U(A01). Likewise, applying the same argument on a

partition of A1 = A10∪A11, we can show that there exist two ultrafilters F10, which

does not contain U(A10) and F11, which does not contain U(A11) (and F1 is one of

these two ultrafilters).

Since this argument can be repeated as many times as we wish, there must be

infinitely many such ultrafilters.
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