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NOTE ON A PYTHAGOREAN RING

Aleksander Grytczuk

Abstract. In this note we give a construction of a Pythagorean ring

Pn = { < x, y, z >∈ Z
3 : x2 + y2 = z2, z − y = n },

where n is a fixed integer.

1. Introduction. B. Dawson in [1] gave a construction of a Pythagorean ring

P = { < x, y, z >∈ Z
3 : x2 + y2 = z2 }.

He defined the operations “⊕” and “◦” by an isomorphism Φ:P → Z×Z and utilized

the elements of Pn. The fact that P is partitioned into sets Pn leaves an interesting

avenue for further exploration. Dawson remarked that it may be possible to define

other operations in a natural way under which P is essentially a different ring and

this is an open problem. In this connection we prove the following theorem.

Theorem. Let

Pn = { < x, y, z >∈ Z
3 : x2 + y2 = z2, z − y = n }.

Then, the integers x, y, z are given by the formulas

(1) x = x, y =
x2 − n2

2n
, z =

x2 + n2

2n

where x and n 6= 0 are the same parity. Moreover, let

α =< a,
a2 − n2

2n
,
a2 + n2

2n
>, β =< b,

b2 − n2

2n
,
b2 + n2

2n
>,

and

(2) α⊕ β =< a+ b− n,
(a+ b − n)2 − n2

2n
,
(a+ b− n)2 + n2

2n
>
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(3)

α◦β =< (a−n)(b−n)+n,
((a− n)(b − n) + n)2 − n2

2n
,
((a− n)(b − n) + n)2 + n2

2n
>

and for n = 0,

(4) < 0, a, a > ⊕ < 0, b, b >=< 0, a+ b, a+ b >

and

(5) < 0, a, a > ◦ < 0, b, b >=< 0, ab, ab > .

Then the set < Pn,⊕, ◦ > is a commutative ring for any fixed integer n.

Proof. First we prove by another way than in [1] that if < x, y, z >∈ Pn, where

n 6= 0 is a fixed integer then the integer elements x, y, z are given by (1). It is

well-known that all solutions of the Pythagorean equation x2 + y2 = z2 are given

by the formulas

(6) x = (M2 −N2)R, y = 2MNR, z = (M2 +N2)R

or

(7) x = 2MNR, y = (M2 −N2)R, z = (M2 +N2)R

where M , N , R are integers such that (M,N) = 1. Suppose that (6) is satisfied.

Since < x, y, z >∈ Pn, n 6= 0, then

(8) n = z − y = R(M −N)2.

By (6) and (8), it follows that

(9) x2 − n2 = R2(M −N)2((M +N)2 − (M −N)2) = 4nMNR = 2ny.

From (9), we have

(10) y =
x2 − n2

2n
.
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In a similar way, we obtain

(11) x2 + n2 = 2nR(M2 +N2) = 2nz

and by (11) it follows that

(12) z =
x2 + n2

2n
.

On the other hand, it is easy to see that by (9) and (11), it follows that x, n are

of the same parity and that y and z are integers. We also note that if x, y, z are

given by (1), then

x2 +

(

x2 − n2

2n

)2

=

(

x2 + n2

2n

)2

.

Now, we can assume that (7) is satisfied. Then we obtain

(13) n = z − y = 2N2R.

From (13) and (7), we get

(14) x2 − n2 = 2nR(M2 −N2) = 2ny

and by (14), it follows that

(15) y =
x2 − n2

2n
.

Similarly, we obtain

(16) x2 + n2 = 4N2R2(M2 +N2) = 2nR(M2 +N2) = 2nz.

From (16), we have

(17) z =
x2 + n2

2n
.
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By (14) and (16), it follows that x, n are the same parity and x, y, z given by (15)

and (17) satisfy the Pythagorean equation. Hence, the first part of our theorem is

proved.

We also note that if n = 0, then x = 0 and y = z and therefore the operations

(4) and (5) are well-defined. Moreover, the set < P0;⊕ > is a commutative group

with identity e0 =< 0, 0, 0 >. It is easy to see that if α, β, γ ∈ P0 then we have

(α ◦ β) ◦ γ = α ◦ (β ◦ γ) and α ◦ β = β ◦ α. The distributive law is also satisfied.

Moreover, the set P0 has multiplicative identity 10 =< 0, 1, 1 >. Therefore, the

set < P0;⊕, ◦ > is a commutative ring. It remains to prove that the set Pn, for

n 6= 0 with the operations (2) and (3) is a commutative ring. First, we prove that

the operations (2) and (3) are well-defined. By the assumptions that α, β ∈ Pn we

have

(18) 2n | a2 − n2, 2n | a2 + n2, 2n | b2 − n2, 2n | b2 + n2.

By well-known properties of the divisibility relation and (18), it follows that

(19) 2n | a2 + b2, n | ab.

We prove that the numbers

(a+ b− n)2 − n2

2n
and

(a+ b− n)2 + n2

2n

are integer numbers. By (19), it follows that 2n | a2 + b2 + 2ab = (a + b)2. Since

(a+ b− n)2 − n2 = (a+ b)2 − 2n(a+ b), then

2n | (a+ b− n)2 − n2.

In a similar way, we obtain that 2n | (a + b − n)2 + n2. On the other hand, it is

easy to see that

(a+ b− n)2 +

(

(a+ b− n)2 − n2

2n

)2

=

(

(a+ b− n)2 + n2

2n

)2
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and
(a+ b− n)2 + n2

2n
−

(a+ b− n)2 − n2

2n
=

2n2

2n
= n.

So denote that α ⊕ β ∈ Pn. In a similar way, we prove that α ◦ β ∈ Pn. Indeed,

since

((a− n)(b− n) + n)2 − n2 = (a− n)2(b − n)2 + 2n(a− n)(b− n)

and (a−n)2 = a2+n2− 2na, (b−n)2 = b2+n2− 2nb, then by (18), it follows that

2n | ((a− n)(b − n) + n)2 − n2.

Similarly, we obtain that 2n | ((a− n)(b − n) + n)2 + n2. Therefore, the numbers

((a− n)(b − n) + n)2 − n2

2n
,

((a− n)(b − n) + n)2 + n2

2n

are integers and together with (a−n)(b−n)+n, satisfy the Pythagorean equation.

For further process of the proof, we note that the second and third coordinates in

(2) and (3) are generated by the first coordinate, therefore it suffices to check all

the conditions of the ring with respect to the first coordinate. Denote by [α]1 the

first coordinate of α ∈ Pn.

Now, we prove that the set < Pn;⊕ > is a commutative group. Let α, β,

γ ∈ Pn. Then by (1) we obtain

α =< a,
a2 − n2

2n
,
a2 + n2

2n
>,

β =< b,
b2 − n2

2n
,
b2 + n2

2n
>,

γ =< c,
c2 − n2

2n
,
c2 + n2

2n
> .

Then, by (2) we obtain

(20) [(α ⊕ β)⊕ γ]1 = ((a+ b− n) + c)− n = a+ b+ c− 2n
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and

(21) [α⊕ (β ⊕ γ)]1 = a+ (b + c− n)− n = a+ b+ c− 2n.

From (20) and (21), we have (α⊕ β)⊕ γ = α⊕ (β ⊕ γ). Similarly, we obtain

[α⊕ β]1 = a+ b− n = b+ a− n = [β ⊕ α]1,

so denote that α ⊕ β = β ⊕ α. On the other hand, we see that e⊕ =< n, 0, n > is

the identity element in < Pn;⊕ >. We have

[α⊕ e⊕]1 = (a+ n)− n = a = (n+ a)− n = [e⊕α]1 = [α]1,

and therefore, α⊕ e⊕ = e⊕ ⊕ α = α.

The inverse element to α ∈ Pn is the element α′ ∈ Pn given by

(22) α′ =< −a+ 2n,
(−a+ 2n)2 − n2

2n
,
(−a+ 2n)2 + n2

2n
> .

Indeed by (22), it follows that [α⊕ α′]1 = a+ (−a+ 2n)− n = n = [e⊕]1 and

[α′ ⊕ α]1 = (−a+ 2n+ a)− n = n = [e⊕]1,

and consequently α ⊕ α′ = α′ ⊕ α = e⊕, and we see that the set < Pn;⊕ > is a

commutative group. Further by (3), it follows that (α ◦ β) ◦ γ = α ◦ (β ◦ γ). We

observe that

[(α ◦ β) ◦ γ]1 = ((a− n)(b− n) + n− n)(c− n) + n = (a− n)(b− n)(c− n) + n

and

[α ◦ (β ◦ γ)]1 = (a− n)((b − n)(c− n) + n− n) + n = (a− n)(b − n)(c− n) + n,

hence the associative law for (3) is proved.

Now, we prove the distributive law. By (2) and (3), it follows that

(23) [(α⊕ β) ◦ γ]1 = (a+ b− 2n)(c− n) + n
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and

[(α ◦ γ)⊕ (β ◦ γ)]1

= (a− n)(c− n) + n+ (b − n)(c− n) + n− n

= (c− n)(a+ b− 2n) + n.(24)

and from (23) and (24), we obtain (α ⊕ β) ◦ γ = (α ◦ γ) ⊕ (β ◦ γ). On the other

hand, we have

(25) [α ◦ (β ⊕ γ]1 = (a− n)(b + c− n− n) + n = (a− n)(b + c− 2n) + n)

and

[(α ◦ β)⊕ (α ◦ γ)]1

= (a− n)(b− n) + n+ (a− n)(c− n) + n− n

= (a− n)(b+ c− 2n) + n(26)

and by (25) and (26), it follows that α◦ (β⊕γ) = (α◦β)⊕ (α◦γ). The distributive

law is proved.

Finally, we observe that

[α ◦ β]1 = (a− n)(b − n) + n = (b− n)(a− n) + n = [β ◦ α]1

and consequently, we obtain α ◦ β = β ◦ α. Summarizing, we obtain that the

set < Pn;⊕, ◦ > with the operations “⊕” and “◦” defined by (2) and (3) is a

commutative ring for any fixed integer n 6= 0. The proof of the Theorem is complete.

Remark. The rings < Pn;⊕, ◦ >; n 6= 0 are the rings without multiplicative

identity.
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