RESIDUES – PART III CONGRUENCES TO GENERAL COMPOSITE MODULI

Joseph B. Dence and Thomas P. Dence

1. Introduction. Every introductory text on number theory presents Euler's Criterion: a positive integer A is a quadratic residue of the odd prime p if and only if

$$A^{(p-1)/2} \equiv 1 \pmod{p}.$$

But what criterion could one use for arbitrary power residues of arbitrary moduli, even those that do not possess primitive roots [1]? This is generally not discussed, and so in this paper we address this question in a manner that is suitable for classroom presentation. Our final result is Theorem 6, which may be regarded as a generalization of Euler's Criterion and is a continuation of our earlier work on residues [2], [3].

2. Some Preliminary Results for Composite Moduli. We quote in this section two well-known results (Theorems 1 and 3) that we shall need. The first result is for moduli that are powers of a single odd prime. The proof is standard [2], [4] and makes use of the fact that a power of an odd prime has a primitive root.

<u>Theorem 1</u>. Let p > 2 be a prime and let n, k be positive integers. Then A is a kth-power residue of p^n if and only if $A^{\phi(p^n)/d} \equiv 1 \pmod{p^n}$, where ϕ is the Euler phi-function and $d = (k, \phi(p^n))$.

Easily constructed counterexamples show that the theorem is false for p = 2. Nevertheless, for odd p the theorem provides a systematic, albeit tedious, way of ascertaining the kth-power residues of p^n .

By Euler's Theorem it is only necessary to consider the case $k \leq \phi(p^n)$. Then, although it is not our focus here to detail the explicit calculation of the *k*th-power residues of p^n , it is possible to prove the following theorem, which by repeated application can in many cases relieve some of the tedium of Theorem 1.

<u>Theorem 2</u>. Let p > 2 be prime and let m, n, k be positive integers that satisfy $1 < k \le \phi(p^m) < \phi(p^n)$. Let $\{A_i\}$ be the least-positive kth-power residues of p^m . Then the least-positive kth-power residues of p^{m+1} are the numbers $\{A_i + ap^m : a = 0, 1, 2, \dots, p-1\}$. For example, by trial (or by Theorem 1) we find that 7 is a quartic residue of 9. Suppose we desire some quartic residues of 81. Then Theorem 2 shows that 7, 16, 25 are quartic residues of 27, and one more application of Theorem 2 yields 7, 34, 61; 16, 43, 70; 25, 52, 79 as *some* of the quartic residues of 81.

The second standard result looks at polynomial congruences with an arbitrary modulus m, where m is written in canonical form as

$$m = \prod_{i=1}^{r} p_i^{\alpha_i},$$

and each p_i is a distinct prime [5].

<u>Theorem 3</u>. Let $f(x) \in \mathbb{Z}[x]$ and let *m* be represented as above. Then the congruence

$$f(x) \equiv 0 \pmod{m}$$

has a solution x if and only if

$$f(x) \equiv 0 \pmod{p_i^{\alpha_i}}$$

has a solution for each i.

The theorem is an immediate consequence of the Chinese Remainder Theorem, and automatically includes the case where m contains powers of 2 in its canonical decomposition.

3. Moduli That Are Powers of Two. Table 1 shows that there is systematic behavior among the residues A in $x^k \equiv A \pmod{2^n}$ when k is even. This contrasts sharply with the case when k is odd; there, the residues A are not limited to particular odd integers [3].

k	n = 4	n = 6	n = 7
$2 \cdot 3 \cdot 5$	1,9	1,9,17,25,33,41,49,57	$1, 9, 17, 25, \cdots, 121$
$2^2 \cdot 5^2$	1	$1,\!17,\!33,\!49$	1,17,33,49,65,81,97,113
$2^2 \cdot 3$	1	1, 33	$1,\!33,\!65,\!97$
2^{3}	1	1,33	$1,\!33,\!65,\!97$

Table 1. Least-Positive Even-Power Residues of 2^n

Of course, when $k = 2^{n-1}$ there is only one least-positive kth-power residue. Less well-known is the fact that this is also true when $k = 2^{n-2}$, $n \ge 3$. It certainly holds when the modulus is 8(n = 3); assume it also holds for the modulus 2^n . Then for any odd x

$$x^{2^{n-2}} \equiv 1 \pmod{2^n},$$

or $x^{2^{n-2}} = 1 + b \cdot 2^n$ for some positive integer b. If x_0 is a presumed solution to $x^{2^{n-1}} \equiv A \pmod{2^{n+1}}$, then

$$\begin{aligned} x_0^{2^{n-1}} &= (x_0^{2^{n-2}})^2 = (1+b\cdot 2^n)^2 = 1+b\cdot 2^{n+1}+b^2\cdot 2^{2n} \\ &\equiv 1 \pmod{2^{n+1}} \\ &\equiv A \pmod{2^{n+1}}. \end{aligned}$$

Hence, by induction we obtain the following theorem.

<u>Theorem 4.</u> If $k = 2^{n-2}$ and $n \ge 3$, then 1 is the only least-positive kth-power residue of 2^n .

<u>Corollary 4.1.</u> If $k = 2^d$, $d \le n-2$. Then the least-positive kth-power residues of 2^n are the numbers $\{1 + 2^{d+2}\sigma : \sigma = 0, 1, \dots, 2^{n-d-2} - 1\}$.

<u>Proof.</u> By Theorem 4 there is one $(2^{d}th)$ -power residue of 2^{d+2} . Theorem 2 can be extended to cover the case p = 2; then there are just two $(2^{d}th)$ -power residues of 2^{d+3} , and these differ by 2^{d+2} . This difference is maintained among the $(2^{d}th)$ -power residues of 2^{d+4} , among the $(2^{d}th)$ -power residues of 2^{d+4} , among the $(2^{d}th)$ -power residues of 2^{d+5} , and so on. For the modulus $m = 2^{n}$ we observe that $1 + (2^{d+2})(2^{n-d-2}) = 1 + m$, so the least-positive $(2^{d}th)$ -power residues of 2^{n} are the numbers of the form $1 + 2^{d+2}\sigma$, where the integer σ runs from 0 to $2^{n-d-2} - 1$.

The Corollary generalizes theorems from [3]: A is a quadratic residue modulo 2^n if and only if A = 8k + 1, and A is a quartic residue modulo 2^n if and only if A = 16k + 1. In general, if $n \ge d + 2$, then there are 2^{n-d-2} (2^dth)-power residues of 2^n .

<u>Corollary 4.2</u>. Let A be a (2^dth) -power residue of 2^n , $n \ge d+2$. Then A has exactly 2^{d+1} incongruent 2^d -th roots modulo 2^n .

<u>Proof.</u> Let $G = \{g_1 = 1, g_2, \dots, g_v\}$ be the group of order $v = \phi(2^n)$ of positive integers less than and relatively prime to 2^n ; let $H = \{h_1, h_2, \dots, h_r\}$ be the set of least-positive 2^d -th roots of unity modulo 2^n . Then H is a subgroup of G, and we can construct the set of *distinct* cosets of $H : \{g_1H = H, g_2H, \dots, g_sH\}$. Each member of a given coset is a 2^d -th root of a fixed $(2^d$ -th)-power residue. Elements from two different cosets cannot be 2^d -th roots of the same residue, for if g_iH, g_jH had such elements, then $g_i^{2^d} \equiv g_j^{2^d} \pmod{2^n}$ would hold. Both g_i, g_j possess inverses, so we obtain for some $h_k \in H$

$$(g_i g_j^{-1})^{2^d} \equiv h_k^{2^d} \equiv 1 \pmod{2^n},$$

and therefore $g_i = g_j h_k$. This says that g_i belongs to the coset $g_j H$, a contradiction.

All of the cosets of H are the same size [6]. It follows that the 2^d -th roots of the various $(2^d$ th)-power residues are equinumerous, namely, r, where

$$r = \frac{\text{no. integers coprime to } 2^n}{\text{no. cosets}} = \frac{\phi(2^n)}{s}$$
$$= \frac{\text{no. integers coprime to } 2^n}{\text{no. residues}}$$
$$= \frac{\phi(2^n)}{2^{n-d-2}}$$
$$= 2^{d+1}.$$

The third equality above follows from Corollary 4.1.

Thus, 1 has four square roots (d = 1), eight fourth roots (d = 2), and so on, modulo 2^n , when $n \ge d+2$. The fourth roots of 1 modulo 128 are found to be 1,

31, 33, 63, 65, 95, 97, and 127 [7]. In contrast, when the modulus is an odd prime, there are always only 2 or 4 incongruent fourth roots of unity [2]. Their distribution is not well understood [8].

The data of Table 1 suggest that when $k = 2^d m$, m = odd, then the kth-power residues of 2^n follow the same pattern as do the (2^dth) -power residues.

<u>Theorem 5.</u> Let $k = 2^d c, c \ge 3$ odd, and let *n* be a positive integer. Then the *k*th-power residues of 2^n are the (2^dth) -power residues of 2^n .

<u>Proof.</u> The least-positive $(2^d c$ -th)-power residues of 2^n are the intersection of the set S_1 of least-positive *c*th-power residues of 2^n and the set S_2 of least-positive $(2^d th)$ -power residues of 2^n . But S_1 is all the odd integers in $[1, 2^n - 1]$ [3], and S_2 is given by Corollary 4.1 if $n \ge d+2$, or by the singleton set $\{1\}$ if n < d+2. Hence, $S_1 \cap S_2 = S_2$, and this is the theorem.

4. General Moduli. The results of the previous sections can finally be assembled to give us the main theorem for arbitrary moduli *m*, now represented by

$$m = 2^n \prod_{i=1}^r p_i^{\alpha_i},$$

where the p_i 's are odd primes.

<u>Theorem 6</u>. (Generalized Euler Criterion.) Let $k = 2^d c > 1, (2, c) = 1$ and let the modulus m be defined as above. Then A is a kth-power residue of m if and only if

$$A^{\phi(p_i^{\alpha_i})/d_i} \equiv 1 \pmod{p_i^{\alpha_i}}, \ d_i = (k, \phi(p_i^{\alpha_i}))$$

for $i = 1, 2, \cdots, r$, and if and only if

$$A \equiv \begin{cases} 1 + 2^{d+2}\sigma \pmod{2^n}, \sigma \in [0, 2^{n-d-2} - 1] & \text{if } n \ge d+2 > 2\\ 1 \pmod{2^n} & \text{if } 0 < n < d+2. \end{cases}$$

<u>Proof.</u> Let $f(x) = x^k - A$. By Theorem 3 we have $f(x) \equiv 0 \pmod{m}$ is solvable if and only if for $i = 1, 2, \dots, r$,

$$f(x) \equiv 0 \pmod{p_i^{\alpha_i}}$$

is solvable and if and only if $f(x) \equiv 0 \pmod{2^n}$ is solvable. The congruences involving the p_i 's hold if and only if

$$\begin{aligned} A^{\phi(p_i^{\alpha_i})/d_i} &\equiv 1 \pmod{p_i^{\alpha_i}} \\ d_i &= (k, \phi(p_i^{\alpha_i})), \end{aligned}$$

according to Theorem 1. If n = 0, we are done.

If n > 0 but d = 0, the congruence

$$x^k - A \equiv 0 \pmod{2^n}$$

is solvable if and only if A is any odd integer [3]. However, when n, d > 0 then from Theorem 5

$$x^k - A \equiv 0 \pmod{2^n}$$

is solvable if and only if A is a (2^dth) -power residue of 2^n , that is (Corollary 4.1), if and only if A is congruent modulo 2^n to a number of the form

$$1 + 2^{d+2}\sigma, \sigma \in [0, 2^{n-d-2} - 1]$$

when $d \le n-2$, or is congruent modulo 2^n to 1 when 0 < n < d+2 (Theorem 4).

<u>Example.</u> $x^{40} \equiv A \pmod{1344}$. Here, $n = 6, d = 3, c = 5, n - d - 2 = 1, p_1 = 3, p_2 = 7$. Theorem 5 gives as criteria for A:

$$\begin{cases}
A \equiv 1 \pmod{3} \\
A^3 \equiv 1 \pmod{7} \\
A \equiv 1 \text{ or } 33 \pmod{64}.
\end{cases}$$

The second congruence yields $A \equiv 1, 2$ or 4 (mod 7). The allowed A's can now be found from repeated applications of the Chinese Remainder Theorem. For example, the unique solution (modulo 1344) to the system

$$\begin{cases} A \equiv 1 \pmod{3} \\ A \equiv 2 \pmod{7} \\ A \equiv 33 \pmod{64}. \end{cases}$$

is A = 289. Indeed, by trial and error one finds $5^{40} \equiv 289 \pmod{1344}$.

References

- H. E. Rose, A Course in Number Theory, Oxford University Press, Oxford, (1988), 83–84.
- J. B. Dence and T. P. Dence, "Cubic and Quartic Residues Modulo a Prime," Missouri Journal of Mathematical Sciences, 7 (1995), 24–31.
- J. B. Dence and T. P. Dence, "Residues Part II, Congruences Modulo Powers of 2," *Missouri Journal of Mathematical Sciences*, 8 (1996), 26–35.
- K. H. Rosen, *Elementary Number Theory and Its Applications*, 3rd ed., Addison-Wesley, Reading, (1993), 301–302.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, (1976), 118–119.
- J. B. Fraleigh, A First Course in Abstract Algebra, 5th ed., Addison-Wesley, Reading, (1994), 121.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., John Wiley, New York, (1980), 98.
- 8. S. M. Turner, "Square Roots mod p," American Mathematical Monthly, 101, (1994), 443–449.

Joseph B. Dence Department of Chemistry University of Missouri-St. Louis St. Louis, MO 63121

Thomas P. Dence Department of Mathematics Ashland University Ashland, OH 44805