
72 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

RESIDUES – PART III

CONGRUENCES TO GENERAL COMPOSITE MODULI

Joseph B. Dence and Thomas P. Dence

1. Introduction. Every introductory text on number theory presents Euler’s

Criterion: a positive integer A is a quadratic residue of the odd prime p if and only

if

A(p−1)/2 ≡ 1 (mod p).

But what criterion could one use for arbitrary power residues of arbitrary moduli,

even those that do not possess primitive roots [1]? This is generally not discussed,

and so in this paper we address this question in a manner that is suitable for

classroom presentation. Our final result is Theorem 6, which may be regarded as

a generalization of Euler’s Criterion and is a continuation of our earlier work on

residues [2], [3].

2. Some Preliminary Results for Composite Moduli. We quote in this

section two well-known results (Theorems 1 and 3) that we shall need. The first

result is for moduli that are powers of a single odd prime. The proof is standard

[2], [4] and makes use of the fact that a power of an odd prime has a primitive root.

Theorem 1. Let p > 2 be a prime and let n, k be positive integers. Then A

is a kth-power residue of pn if and only if Aφ(pn)/d ≡ 1 (mod pn), where φ is the

Euler phi-function and d = (k, φ(pn)).

Easily constructed counterexamples show that the theorem is false for p = 2.

Nevertheless, for odd p the theorem provides a systematic, albeit tedious, way of

ascertaining the kth-power residues of pn.

By Euler’s Theorem it is only necessary to consider the case k ≤ φ(pn). Then,

although it is not our focus here to detail the explicit calculation of the kth-power

residues of pn, it is possible to prove the following theorem, which by repeated

application can in many cases relieve some of the tedium of Theorem 1.

Theorem 2. Let p > 2 be prime and let m,n, k be positive integers that satisfy

1 < k ≤ φ(pm) < φ(pn). Let {Ai} be the least-positive kth-power residues of pm.

Then the least-positive kth-power residues of pm+1 are the numbers {Ai + apm :

a = 0, 1, 2, · · · , p− 1}.
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For example, by trial (or by Theorem 1) we find that 7 is a quartic residue of

9. Suppose we desire some quartic residues of 81. Then Theorem 2 shows that 7,

16, 25 are quartic residues of 27, and one more application of Theorem 2 yields 7,

34, 61; 16, 43, 70; 25, 52, 79 as some of the quartic residues of 81.

The second standard result looks at polynomial congruences with an arbitrary

modulus m, where m is written in canonical form as

m =

r
∏

i=1

pαi

i ,

and each pi is a distinct prime [5].

Theorem 3. Let f(x) ∈ Z[x] and let m be represented as above. Then the

congruence

f(x) ≡ 0 (mod m)

has a solution x if and only if

f(x) ≡ 0 (mod pαi

i )

has a solution for each i.

The theorem is an immediate consequence of the Chinese Remainder Theorem,

and automatically includes the case where m contains powers of 2 in its canonical

decomposition.

3. Moduli That Are Powers of Two. Table 1 shows that there is sys-

tematic behavior among the residues A in xk ≡ A (mod 2n) when k is even. This

contrasts sharply with the case when k is odd; there, the residues A are not limited

to particular odd integers [3].
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Table 1. Least-Positive Even-Power Residues of 2n

k n = 4 n = 6 n = 7

2 · 3 · 5 1,9 1,9,17,25,33,41,49,57 1, 9, 17, 25, · · · , 121

22 · 52 1 1,17,33,49 1,17,33,49,65,81,97,113

22 · 3 1 1, 33 1,33,65,97

23 1 1,33 1,33,65,97

Of course, when k = 2n−1 there is only one least-positive kth-power residue. Less

well-known is the fact that this is also true when k = 2n−2, n ≥ 3. It certainly

holds when the modulus is 8(n = 3); assume it also holds for the modulus 2n. Then

for any odd x

x2n−2

≡ 1 (mod 2n),

or x2n−2

= 1 + b · 2n for some positive integer b. If x0 is a presumed solution to

x2n−1

≡ A (mod 2n+1), then

x2n−1

0 = (x2n−2

0 )2 = (1 + b · 2n)2 = 1 + b · 2n+1 + b2 · 22n

≡ 1 (mod 2n+1)

≡ A (mod 2n+1).

Hence, by induction we obtain the following theorem.

Theorem 4. If k = 2n−2 and n ≥ 3, then 1 is the only least-positive kth-power

residue of 2n.

Corollary 4.1. If k = 2d, d ≤ n− 2. Then the least-positive kth-power residues

of 2n are the numbers {1 + 2d+2σ : σ = 0, 1, · · · , 2n−d−2 − 1}.

Proof. By Theorem 4 there is one (2dth)-power residue of 2d+2. Theorem 2

can be extended to cover the case p = 2; then there are just two (2dth)-power

residues of 2d+3, and these differ by 2d+2. This difference is maintained among

the (2dth)-power residues of 2d+4, among the (2dth)-power residues of 2d+5, and so

on. For the modulus m = 2n we observe that 1 + (2d+2)(2n−d−2) = 1 +m, so the

least-positive (2dth)-power residues of 2n are the numbers of the form 1 + 2d+2σ,

where the integer σ runs from 0 to 2n−d−2 − 1.
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The Corollary generalizes theorems from [3]: A is a quadratic residue modulo

2n if and only if A = 8k + 1, and A is a quartic residue modulo 2n if and only if

A = 16k+ 1. In general, if n ≥ d+ 2, then there are 2n−d−2 (2dth)-power residues

of 2n.

Corollary 4.2. Let A be a (2dth)-power residue of 2n, n ≥ d + 2. Then A has

exactly 2d+1 incongruent 2d-th roots modulo 2n.

Proof. Let G = {g1 = 1, g2, · · · , gv} be the group of order v = φ(2n) of

positive integers less than and relatively prime to 2n; let H = {h1, h2, · · · , hr} be

the set of least-positive 2d-th roots of unity modulo 2n. Then H is a subgroup of

G, and we can construct the set of distinct cosets of H : {g1H = H, g2H, · · · , gsH}.

Each member of a given coset is a 2d-th root of a fixed (2d-th)-power residue.

Elements from two different cosets cannot be 2d-th roots of the same residue, for

if giH, gjH had such elements, then g2
d

i ≡ g2
d

j (mod 2n) would hold. Both gi, gj

possess inverses, so we obtain for some hk ∈ H

(gig
−1
j )2

d

≡ h2d

k ≡ 1 (mod 2n),

and therefore gi = gjhk. This says that gi belongs to the coset gjH , a contradiction.

All of the cosets of H are the same size [6]. It follows that the 2d-th roots of

the various (2dth)-power residues are equinumerous, namely, r, where

r =
no. integers coprime to 2n

no. cosets
=

φ(2n)

s

=
no. integers coprime to 2n

no. residues

=
φ(2n)

2n−d−2

= 2d+1.

The third equality above follows from Corollary 4.1.

Thus, 1 has four square roots (d = 1), eight fourth roots (d = 2), and so on,

modulo 2n, when n ≥ d + 2. The fourth roots of 1 modulo 128 are found to be 1,
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31, 33, 63, 65, 95, 97, and 127 [7]. In contrast, when the modulus is an odd prime,

there are always only 2 or 4 incongruent fourth roots of unity [2]. Their distribution

is not well understood [8].

The data of Table 1 suggest that when k = 2dm, m = odd, then the kth-power

residues of 2n follow the same pattern as do the (2dth)-power residues.

Theorem 5. Let k = 2dc, c ≥ 3 odd, and let n be a positive integer. Then the

kth-power residues of 2n are the (2dth)-power residues of 2n.

Proof. The least-positive (2dc-th)-power residues of 2n are the intersection of

the set S1 of least-positive cth-power residues of 2n and the set S2 of least-positive

(2dth)-power residues of 2n. But S1 is all the odd integers in [1, 2n − 1] [3], and

S2 is given by Corollary 4.1 if n ≥ d+ 2, or by the singleton set {1} if n < d + 2.

Hence, S1 ∩ S2 = S2, and this is the theorem.

4. General Moduli. The results of the previous sections can finally be

assembled to give us the main theorem for arbitrary moduli m, now represented by

m = 2n
r
∏

i=1

pαi

i ,

where the pi’s are odd primes.

Theorem 6. (Generalized Euler Criterion.) Let k = 2dc > 1, (2, c) = 1 and let

the modulus m be defined as above. Then A is a kth-power residue of m if and

only if

Aφ(p
αi

i
)/di ≡ 1 (mod pαi

i ), di = (k, φ(pαi

i ))

for i = 1, 2, · · · , r, and if and only if

A ≡

{

1 + 2d+2σ (mod 2n), σ ∈ [0, 2n−d−2 − 1] if n ≥ d+ 2 > 2

1 (mod 2n) if 0 < n < d+ 2.

Proof. Let f(x) = xk − A. By Theorem 3 we have f(x) ≡ 0 (mod m) is

solvable if and only if for i = 1, 2, · · · , r,

f(x) ≡ 0 (mod pαi

i )
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is solvable and if and only if f(x) ≡ 0 (mod 2n) is solvable. The congruences

involving the pi’s hold if and only if

Aφ(p
αi

i
)/di ≡ 1 (mod pαi

i )

di = (k, φ(pαi

i )),

according to Theorem 1. If n = 0, we are done.

If n > 0 but d = 0, the congruence

xk −A ≡ 0 (mod 2n)

is solvable if and only if A is any odd integer [3]. However, when n, d > 0 then from

Theorem 5

xk −A ≡ 0 (mod 2n)

is solvable if and only if A is a (2dth)-power residue of 2n, that is (Corollary 4.1),

if and only if A is congruent modulo 2n to a number of the form

1 + 2d+2σ, σ ∈ [0, 2n−d−2 − 1]

when d ≤ n− 2, or is congruent modulo 2n to 1 when 0 < n < d+ 2 (Theorem 4).

Example. x40 ≡ A (mod 1344). Here, n = 6, d = 3, c = 5, n − d − 2 = 1,

p1 = 3, p2 = 7. Theorem 5 gives as criteria for A:











A ≡ 1 (mod 3)

A3 ≡ 1 (mod 7)

A ≡ 1 or 33 (mod 64).

The second congruence yields A ≡ 1, 2 or 4 (mod 7). The allowed A’s can

now be found from repeated applications of the Chinese Remainder Theorem. For

example, the unique solution (modulo 1344) to the system











A ≡ 1 (mod 3)

A ≡ 2 (mod 7)

A ≡ 33 (mod 64).
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is A = 289. Indeed, by trial and error one finds 540 ≡ 289 (mod 1344).
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