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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

88. [1995, 140; 1996, 160–167] Proposed by Curtis Cooper and Robert E.
Kennedy, Central Missouri State University, Warrensburg, Missouri.

Let m be a positive integer. Prove that

m∏
i=1

cos2
iπ

2m+ 1
=

1

4m
.

Comment by Thomas C. Leong, The City College of City University of New
York, New York, New York.

The discussion of Problem 232 in D. O. Shklarsky, N. N. Chentzov and I. M.
Yaglom, The USSR Olympiad Problem Book, Dover Publications, New York, 1993,
gives several solutions to show that

m∏
i=1

sin
iπ

2m+ 1
=

√
2m+ 1

2m
,

m−1∏
i=1

sin
iπ

2m
=

√
m

2m−1
,

m∏
i=1

cos
iπ

2m+ 1
=

1

2m
,

m−1∏
i=1

cos
iπ

2m
=

√
m

2m−1
.

89. [1996, 36] Proposed by Stanley Rabinowitz, MathPro Press, Westford,
Massachusetts.

Let ω be a primitive 49th root of unity. Prove that

49∏
k=1

gcd(k,49)=1

(1− ωk) = 7.
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Solution I by Lawrence Somer, The Catholic University of America, Washing-
ton, D.C.

We note that

49∏
k=1

gcd(k,49)=1

(x− ωk) =
x49 − 1

x7 − 1
= x42 + x35 + x28 + x21 + x14 + x7 + 1.

The first equality follows since the roots of

x49 − 1

x7 − 1
= 0

are the 49th roots of unity which are not 7th roots of unity. Letting x = 1, we
obtain that

49∏
k=1

gcd(k,49)=1

(1− ωk) = 7.

Solution II by Joseph B. Dence, University of Missouri-St. Louis, St. Louis,
Missouri.

Let

P =

49∏
k=1

gcd(k,49)=1

(1− ωk).

The choice of primitive root is immaterial; choose

ω = e2πi/49.

Then
ωk = (ω49−k)∗,
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where ∗ means complex conjugate, so

(1− ωk)(1− ω49−k) = [1− cos(2πk/49)]2 + sin2(2πk/49) = 4 sin2(πk/49).

Hence, by pairing off the factors in P , we obtain

P =
424
∏24
k=1 sin2(πk/49)

43
∏
k=7,14,21 sin2(πk/49)

= 421
∏24
k=1 sin2(πk/49)∏3
k=1 sin2(πk/7)

.

To evaluate the products we use the formula (L. B. W. Jolley, Summation of Series,
2nd ed., Dover, 1961, p. 190)

sin2(π/n) sin2(2π/n) · · · sin2(((n− 1)/2)π/n) = n/2n−1,

where n is odd. Finally, we obtain

P = 242
49/248

7/26
= 7.

Solution III by Frank J. Flanigan, San Jose State University, San Jose, Cali-
fornia.

We prove that if p is a prime, m is a natural number, and ω is a primitive pmth
root of unity, then

pm∏
k=1

gcd(k,pm)=1

(1− ωk) = p.

First, note that the left side here is f(1), where

f(x) =

pm∏
k=1

gcd(k,pm)=1

(x− ωk).
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Second, note that

f(x) = Φpm(x) = the pmth cyclotomic polynomial over the ring of integers.

This is because
{ωk | 1 ≤ k ≤ pm, gcd(k, pm) = 1}

is precisely the set of primitive pmth roots of unity in the complex numbers.
Third, recall that

Φpm(x) = Φp(x
pm−1

),

where Φp(x) is the pth cyclotomic polynomial. This follows from the fact that if ζ

is a primitive pmth root of unity, then ζp
m−1

is a primitive pth root of unity and
hence, a zero of Φp(x).

Fourth, recall that

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Thus, the left side of the product is

f(1) = Φpm(1) = Φp(1
pm−1

) = 1 + 1 + · · ·+ 1 + 1 = p,

which is what we asserted.

Solution IV by Kandasamy Muthuvel, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin.

The above result is a special case of the following proposition.
Proposition. Let n > 1 be an integer and let ω be a primitive nth root of unity.

(1) If p is a prime divisor of n, then

n∏
k=1

gcd(k,p)=1

(1− ωk) = p.

(2) If p is a prime divisor of n and n is not prime, then

n−1∏
k=1

gcd(k,p)=p

(1− ωk) = n/p.
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(3) If n is the product of two distinct primes, then

n−1∏
k=1

gcd(k,n)=1

(1− ωk) = 1.

Proof. Since

xn − 1 =

n∏
k=1

(x− ωk) = (x− 1)

n−1∏
k=1

(x− ωk),

by differentiating both sides of the above equation with respect to x and by letting
x = 1, we get

(∗) n =

n−1∏
k=1

(1− ωk).

Let p be a prime divisor of n and let m = (n/p). Since

(ωp)k, 1 ≤ k ≤ m

are solutions of the equation xm − 1 = 0 and the solutions are distinct,

xm − 1 =

m∏
k=1

(x− ωpk).

Hence, following the method used in the beginning of the proof, we get

(∗∗) (n/p) = m =

m−1∏
k=1

(1− ωpk) =

n−1∏
k=1

gcd(k,p)=p

(1− ωk), when m > 1.
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Part (1) of the proposition follows from (∗) when n = p and it follows from (∗)
and (∗∗) when n is not prime.

Part (2) is in fact (∗∗).
To prove the third part of the proposition, let n = pq, where p and q are

distinct primes. By (∗∗),

q =

q−1∏
k=1

(1− ωpk) and p =

p−1∏
k=1

(1− ωqk).

Clearly, pk 6= qs for 1 ≤ k ≤ q − 1 and 1 ≤ s ≤ p− 1. Hence,

pq =

n−1∏
k=1

p|k or q|k

(1− ωk)

and by (∗) we get

pq =

n−1∏
k=1

(1− ωk).

These two equations imply that

1 =

n−1∏
k=1

gcd(k,n)=1

(1− ωk).
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Solution V by Thomas C. Leong, The City College of City University of New
York, New York, New York.

In general, we show that if ω is a primitive nth root of unity, n ≥ 2, then

n∏
k=1

(k,n)=1

(1− ωk) =

{
p, if n = pα is the power of a prime p, α ≥ 1

1, otherwise.

The primitive nth roots of unity are

{exp(2πirj/n)}φ(n)j=1 ,

where
{rj}φ(n)j=1

is a reduced residue system modulo n. Now

{k : 1 ≤ k ≤ n, (k, n) = 1}

is a reduced residue system modulo n, and for any integer a relatively prime to n,

{ak : 1 ≤ k ≤ n, (k, n) = 1}

is also a reduced residue system modulo n. Thus, as k runs through the positive
integers relatively prime to and not exceeding n, ωk runs through the primitive nth
roots of unity. Hence,

n∏
k=1

(k,n)=1

(x− ωk)

is the nth cyclotomic polynomial
Φn(x).

Thus, we wish to show that for n ≥ 2,

(∗) Φn(1) =

{
p, if n = pα is the power of a prime p, α ≥ 1

1, otherwise.
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We induct on n. The case n = 2 is simple to verify, so suppose that (∗) holds for
integers less than n. Now ζ is a root of xn − 1 if and only if it is a primitive dth
root of unity for some d which divides n; thus,

xn − 1 =
∏
d|n

Φd(x).

If n = pα is a prime power, then

Φpα(x) =
xp

α − 1∏
d|pα
d6=pα

Φd(x)
=

1 + x+ x2 + · · ·+ xp
α−1∏

d|pα
d 6=1,pα

Φd(x)
=

1 + x+ x2 + · · ·+ xp
α−1

Φp(x) · Φp2(x) · · ·Φpα−1(x)

and so by the inductive hypothesis

Φpα(1) =
pα

Φp(1) · Φp2(1) · · ·Φpα−1(1)
=

pα

pα−1
= p.

If n is not a prime power, say,

n = pα1
1 pα2

2 · · · pαrr

with r ≥ 2, αi ≥ 1, then

Φn(x) =
xn − 1∏
d|n
d6=n

Φd(x)
=

1 + x+ x2 + · · ·+ xn−1∏
d|n
d 6=1,n

Φd(x)
.

By the inductive hypothesis, Φd(1) = 1 if d is not a prime power. Thus,

Φn(1) =
n

Φp1(1) · Φp21(1) · · ·Φpα1
1

(1) · · ·Φpr (1) · Φp2r (1) · · ·Φpαrr (1)
=

n

pα1
1 pα2

2 · p
αr
r

= 1

and we are done.
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90. [1996, 36–37] Proposed by Joseph B. Dence, University of Missouri-St.
Louis, St. Louis, Missouri.

The Fibonacci polynomials, {Un(x)}, are defined by U1(x) = 1, U2(x) = x,
and Un(x) = xUn−1(x) + Un−2(x), for n ≥ 3.

(a) Derive a Binet-like formula for Un(x).

(b) Prove that

(Un(x))2 − Un−1(x)Un+1(x) = (−1)n−1, n ≥ 2.

(c) Find a formula for the sum

n∑
k=1

(Uk(x))2.

(d) Let {Ln} be the Lucas numbers: L1 = 1, L2 = 3, Ln = Ln−1 + Ln−2
(n ≥ 3). Prove that

U ′n(1) =
nLn − Fn

5
,

where Fn denotes the nth Fibonacci number and U ′n(x) denotes the derivative of
Un(x).

(e) Find a generating function for the Un(x)’s, that is, a function f(x, y) such
that, formally,

f(x, y) =

∞∑
n=1

Un(x)yn.

(f) Prove that for n > 1 all the zeroes of Un(x) lie along the imaginary axis.
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Solution I by the proposer.

(a) Suppose

U1(x) =
a(x)− b(x)

d(x)

and

U2(x) =
[a(x)]2 − [b(x)]2

d(x)
,

so
U2(x)/U1(x) = x = a(x) + b(x).

Next,
U3(x)/U1(x) = x2 + 1 = [a(x)]2 + a(x)b(x) + [b(x)]2.

Comparison then gives

[a(x)]2 + a(x)b(x) + [b(x)]2 = [a(x) + b(x)]2 + 1,

so a(x)b(x) = −1. It follows that

x = a(x)− 1

a(x)
,

or
[a(x)]2 − xa(x)− 1 = 0,

and

a(x) =
1

2

(
x±

√
x2 + 4

)
.

Since, in the equation above, a(1) cannot be negative, we must take the (+) sign
in the brackets. Thus, we conjecture that

Un(x) =
[ 12 (x+

√
x2 + 4)]n − [ 12 (x−

√
x2 + 4)]n

√
x2 + 4

.
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This is automatically true for n = 1, 2; assume it to be true for n = k − 2, k − 1.
Then,

Uk(x) = x

(
[a(x)]k−1 − [b(x)]k−1

d(x)

)
+

(
[a(x)]k−2 − [b(x)]k−2

d(x)

)

=
[a(x)]k−2(1 + xa(x))− [b(x)]k−2(1 + xb(x))

d(x)

=
[a(x)]k−2[a(x)]2 − [b(x)]k−2[b(x)]2

d(x)

identically. The conjecture is therefore true for all n by induction.

(b) This follows by straightforward induction, upon making use of a(x)b(x) =
−1 and a(x) − b(x) = d(x). If we define U0(x) = 0, then the relation is also true
for n = 1.

(c) We have the identity

n∑
k=1

F 2
k = FnFn+1.

The analogous equation for Un(x)’s would not be correct since the terms on the
right-hand side would all be one power of x too great. Hence, we conjecture

n∑
j=1

[Uj(x)]2 =
Un(x)Un+1(x)

x
.

This holds for n = 1; assume it holds for n = k. Then

k+1∑
j=1

[Uj(x)]2 =
Uk(x)Uk+1(x)

x
+ [Uk+1(x)]2

=
[Uk+2(x)− xUk+1(x)]Uk+1(x)

x
+ [Uk+1(x)]2

=
Uk+1(x)Uk+2(x)

x
,
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so the conjecture is true for all n by induction.

(d) This follows by straightforward induction, upon making use of the identity

Lj = Fj−1 + Fj+1.

(e) We have

yf(x, y) =

∞∑
n=1

Un(x)yn+1 =

∞∑
m=2

Um−1(x)ym

xf(x, y) =

∞∑
n=1

xUn(x)yn =

∞∑
n=2

xUn(x)yn + xU1(x)y

=

∞∑
m=2

[Um+1(x)− Um−1(x)]ym + xyU1(x)

1

y
f(x, y) =

∞∑
n=1

Un(x)yn−1 =

∞∑
m=0

Um+1(x)ym

=

∞∑
m=2

Um+1(x)ym + U1(x) + U2(x)y.

Combination of these equations yields

xf(x, y)− xyU1(x) =
1

y
f(x, y)− U1(x)− U2(x)y − yf(x, y),

or equivalently,

f(x, y) =
y

1− xy − y2
.

(f) In the result of part (a) let x = 2i cos θ; then from deMoivre’s theorem we
obtain

Un(2i cos θ) = −in+1

(
sinnθ

sin θ

)
.
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For θ satisfying 0 ≤ θ < 2π, the right-hand side is 0 only when θ = jπ/n, j =
1, 2, . . . , 2n − 1. But of these zeroes, only n − 1 are distinct because cos(jπ/n) =
cos[2π− (jπ/n)]. If θ lies outside of [0, 2π) and is a zero of Un, then θ is congruent
modulo 2π to jπ/n, for some integer j ∈ [1, 2n − 1]. Hence, there are just n − 1
incongruent values of θ modulo 2π, and since Un(x) is of degree n− 1, it can only
have n− 1 zeroes. It follows that all the zeroes of Un(x) are the pure imaginaries

{2i cos(jπ/n) : j = 1, 2, . . . , 2n− 1}.

We note that when n is even, but not odd, x = 0 is a zero (choose j = 1
2n).

Solution II by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.

(a) The characteristic equation for Un(x) is λ2− xλ− 1 = 0. The roots of this
equation are u = u(x) = (x+

√
x2 + 4)/2 and v = v(x) = (x−

√
x2 + 4)/2. So,

Un(x) = c1u
n + c2v

n,

where c1 and c2 are constants. Using the initial conditions, one obtains the system
of equations

U1(x) = c1u+ c2v = 1,

U2(x) = c1u
2 + c2v

2 = x.

The solution of this system is c1 = 1/
√
x2 + 4, c2 = −1/

√
x2 + 4 if x 6= ±2i. Hence,

for x 6= ±2i.

(1) Un(x) = (un − vn)/
√
x2 + 4.
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(b) From (1),

[Un(x)]2 − Un−1(x)Un+1(x)

=
u2n − 2(uv)n + v2n − [u2n − un−1vn+1 − un+1vn−1 + v2n]

x2 + 4

=
2(−1)n−1 + (uv)n−1(u2 + v2)

x2 + 4

= (−1)n−1
u2 + 2 + v2

x2 + 4

= (−1)n−1
(u− v)2

x2 + 4

= (−1)n−1.

(c) The sequence of Fibonacci polynomials can be extended backwards by
defining U0(x) = 0. Then

n∑
k=1

[Uk(x)]2

=

n∑
k=1

(
Uk(x)[Uk+1(x)− Uk−1(x)]/x

)

=
1

x

( n∑
k=1

Uk(x)Uk+1(x)−
n∑
k=1

Uk(x)Uk−1(x)

)

=
1

x

(
[U1(x)U2(x)− U1(x)U0(x)] + [U2(x)U3(x)− U2(x)U1(x)]

+ · · ·+ [Un(x)Un+1(x)− Un(x)Un−1(x)]

)

=
Un(x)Un+1(x)

x
.
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(d) Using (1) it is straightforward to show that

U ′n(x) =

√
x2 + 4[nun−1u′ − nvn−1v′]− xUn(x)

x2 + 4

=
n
√
x2 + 4[un/

√
x2 + 4 + vn/

√
x2 + 4]− xUn(x)

x2 + 4

=
n(un + vn)− xUn(x)

x2 + 4
.

In particular, if x = 1, then

U ′n(1) =
n[un(1) + vn(1)]− Un(1)

5

=
nLn − Fn

5
.

(e)

f(x, y) =

∞∑
n=1

Un(x)yn

= y + xy2 +

∞∑
n=3

[xUn−1(x) + Un−2(x)]yn

= y + xy2 + xy

∞∑
n=3

Un−1(x)yn−1 + y2
∞∑
n=3

Un−2(x)yn−2.

Thus,
f(x, y) = y + xy2 + xy[f(x, y)− y] + y2f(x, y).

So, (1− xy − y2)f(x, y) = y and therefore, f(x, y) = y/(1− xy − y2).
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(f) Using (1), Un(x) = 0 is equivalent to un = vn and so

u

v
= 11/n = e2kπi/n

for k = 0, 1, . . . , n− 1. Since

u

v
= (x+

√
x2 + 4)2/(−4),

x
√
x2 + 4 = ±2iekπi/n.

Solving this equation for x gives

x = ±2i cos

(
kπ

n

)
.

91. [1996, 37] Proposed by Herta T. Freitag, Roanoke, Virginia.

Pythagoras did not have our computational facilities for trigonometric func-
tions (calculators or tables) at his disposal, but he may have had a “feeling” for
the aesthetic beauty of the golden ratio in his soul, as he is said to have chosen the
pentagram as the design for the fraternity pin of his academy.

Let R, the radius of a circle be given. How could one obtain the area of the
inscribed pentagram on this basis? (Leave your answer in terms of G = (

√
5+1)/2,

the golden ratio.)

Solution I by the proposer.

Referring to Figure 1, the area of the pentagram is given by

(1) K = 5(Area of 4AME − Area of 4APE).

But,

Area of 4AME =
R2

2
sin 72◦
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and

Area of 4APE =
a2

2
sin 72◦,

and thus,

(2) K =
5(R2 − a2)

2
sin 72◦.

For determining a, we consider 4AMP (see Figure 2), and, using the law of sines

(3) a =
sin 36◦

sin 54◦
R.

Now, we wish to obtain all these trigonometric functions. Referring to a regular
decagon inscribed into our circle (see Figure 3) and letting its side be s10, from
similar triangles, we have

s10
R

=
R− s10
s10

,

from which

s10 = R(
√

5− 1)/2 =
R

G
.

Furthermore, since

sin 18◦ =
R

2s10
,

(4) sin 18◦ =
1

2G
.

Next, since sin 36◦ = 2 sin 18◦ cos 18◦,

(5) sin 36◦ =

√
4G+ 3

2G2
.
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To obtain sin 54◦ = sin(3(18))◦, we resort to sin 3x = sinx(3− 4 sin2 x) to have

sin 54◦ =
1

2G

(
3− 1

G2

)
,

or

(6) sin 54◦ =
G

2
.

To compute sin 72◦ = sin(4(18))◦, we use

sin 4x = sin 2(2x) = 2 sin 2x(1− 2 sin2 x).

Thus,
sin 72◦ = 2 sin 36◦(1− 2 sin2 18◦)

or

sin 72◦ =

√
4G+ 3

G2

(
1− 1

2G2

)
,

from which

(7) sin 72◦ =

√
4G+ 3

2G
.

Finally, from (3), (5), and (6),

a =

√
4G+ 3

G3R

and

R2 − a2 = R2

(
1− 4G+ 3

G6

)
=

2R2

G3
.
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Hence, by (2),

K =
5

2

2R2

G3

√
4G+ 3

2G
,

and the area of our pentagram becomes

K =
5
√

4G+ 3

2G4
R2.

Figure 1.
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Figure 2.

Figure 3.
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Solution II by Russell Euler, Northwest Missouri State University, Maryville,
Missouri.

Let x be the length of a side of the pentagon inscribed in the given circle. By
the Law of Cosines,

x2 = R2 +R2 − 2R2 cos 72◦

= 2R2(1− sin 18◦).

Since it is known that sin 18◦ = (G− 1)/2, x2 = R2(3−G) and so x = R
√

3−G.
Therefore, the area of the pentagon is given by

A1 =
5

4
x2 cot 36◦.

Since cot 36◦ = G/
√

3−G,

A1 =
5

4
R2G

√
3−G.

Then the area, A, of the pentagram is A = A1 − 5A2, where A2 is the area of the
triangle in the figure below.
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Then, A2 = xh/2. From the Law of Sines,

r

sin 36◦
=

x

sin 108◦

and so

r =
x sin 36◦

sin 72◦
=

x sin 36◦

2 sin 36◦ cos 36◦
=

x

2 sin 54◦
=
x

G
.

Also,

r2 =

(
x

2

)2

+ h2

and hence, h =
√

4−G2x/(2G). Then

A2 =
√

4−G2x2/(4G) =
√

4−G2R2(3−G)/(4G).

Therefore,

A =
5

4
R2G

√
3−G− 5R2(3−G)

√
4−G2

4G

=
5

4
R2

(
G
√

3−G− (3−G)
√

4−G2

G

)
.
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Solution III by Joseph B. Dence, University of Missouri-St. Louis, St. Louis,
Missouri.

Pythagoras knew that intersecting diagonals cut each other in the golden ratio
γ, that is,

MB

EM
= γ.

Let AO = R, OO′′ = h, DC = s; as 4DO′C ∼ 4EO′B, we obtain

EB

DC
=
AD

DC
= γ.

Then 4OO′′D and 4AO′′D furnish the Pythagorean equations R2 = ( 1
2s)

2 + h2

and γ2s2 = (1
2s)

2 + (R + h)2, respectively. These yield h = 1
2γR, s = R

√
3− γ,
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upon making use of 1
γ = γ + 1. Additionally, AO′′ = R + h = R(1 + 1

2γ) =

2AM ′ +O′O′′ = 2AM ′ + AM ′

γ , so

AM ′ =
1

2
R

(
3γ + 1

2γ + 1

)
.

Finally, we have

Area of pentagram = 2

(
Area of 4AO′D + Area of 4AMM ′′

)

= 2

(
1

2
(AO′)(DO′′) +

1

2
(MM ′′)(AM ′)

)

= (2AM ′)

(
1

2
s

)
+

(
s

1 + r

)
(AM ′)

= s(AM ′)

(
1 +

1

1 + γ

)

= R
√

3− γ
(
R

2

3γ + 1

2γ + 1

)(
γ + 2

γ + 1

)

=
s

2
R2
√

3− γ
(

2γ + 1

5γ + 3

)

=
5

2
R2
√

3− γ(2− γ)

=
5

2
R2
√

18− 11γ.

Equivalent formulations of the final answer are possible.
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92. [1996, 37; 1996, 89] Proposed by Joseph B. Dence, University of Missouri-
St. Louis, St. Louis, Missouri.

It is easy to show that the homogeneous quadratic expression A2
n − 2B2

n is
invariant for all members of the sequence {γn}∞n=1, defined by γn = (3 + 2

√
2)n =

An+Bn
√

2. Find a homogeneous cubic expression that is invariant for all members
of the sequence {In}∞n=1, defined by In = (1 + 3

√
2 + 3
√

4)n = An +Bn
3
√

2 + Cn
3
√

4.

Solution I by Lamarr Widmer, Messiah College, Grantham, Pennsylvania.

We have

An+1 +Bn+1
3
√

2 + Cn+1
3
√

4 = (1 +
3
√

2 +
3
√

4)(An +Bn
3
√

2 + Cn
3
√

4).

It is routine to expand the right hand side and equate coefficients of like terms to
obtain

An+1 = An + 2Bn + 2Cn, Bn+1 = An +Bn + 2Cn, and Cn+1 = An +Bn + Cn.

We will denote the general homogeneous cubic expression in three variables x, y, z
as follows.

Q(x, y, z) = ax3 + by3 + cz3 + dx2y + exy2 + fx2z + gxz2 + hy2z + jyz2 + kxyz.

Now the desired invariance condition can be stated as follows.

0 =Q(An+1, Bn+1, Cn+1)−Q(An, Bn, Cn)

=Q(An + 2Bn + 2Cn, An +Bn + 2Cn, An +Bn + Cn)−Q(An, Bn, Cn)

=A3
n(b+ c+ d+ e+ f + g + h+ j + k)

+B3
n(8a+ c+ 4d+ 2e+ 4f + 2g + h+ j + 2k)

+ C3
n(8a+ 8b+ 8d+ 8e+ 4f + 2g + 4h+ 2j + 4k)

+A2
nBn(6a+ 3b+ 3c+ 4d+ 4e+ 5f + 4g + 3h+ 3j + 4k)

+AnB
2
n(12a+ 3b+ 3c+ 8d+ 4e+ 8f + 5g + 3h+ 3j + 5k)
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+A2
nCn(6a+ 6b+ 3c+ 6d+ 6e+ 4f + 4g + 5h+ 4j + 5k)

+AnC
2
n(12a+ 12b+ 3c+ 12d+ 12e+ 8f + 4g + 8h+ 5j + 8k)

+B2
nCn(24a+ 6b+ 3c+ 16d+ 10e+ 12f + 6g + 4h+ 4j + 8k)

+BnC
2
n(24a+ 12b+ 3c+ 20d+ 16e+ 12f + 6g + 8h+ 4j + 10k)

+AnBnCn(24a+ 12b+ 6c+ 20d+ 16e+ 16f + 10g + 10h+ 8j + 12k).

So we need to solve the system

b+ c+ d+ e+ f + g + h+ j + k = 0

8a+ c+ 4d+ 2e+ 4f + 2g + h+ j + 2k = 0

8a+ 8b+ 8d+ 8e+ 4f + 2g + 4h+ 2j + 4k = 0

6a+ 3b+ 3c+ 4d+ 4e+ 5f + 4g + 3h+ 3j + 4k = 0

12a+ 3b+ 3c+ 8d+ 4e+ 8f + 5g + 3h+ 3j + 5k = 0

6a+ 6b+ 3c+ 6d+ 6e+ 4f + 4g + 5h+ 4j + 5k = 0

12a+ 12b+ 3c+ 12d+ 12e+ 8f + 4g + 8h+ 5j + 8k = 0

24a+ 6b+ 3c+ 16d+ 10e+ 12f + 6g + 4h+ 4j + 8k = 0

24a+ 12b+ 3c+ 20d+ 16e+ 12f + 6g + 8h+ 4j + 10k = 0

24a+ 12b+ 6c+ 20d+ 16e+ 16f + 10g + 10h+ 8j + 12k = 0.

This is a straightforward but sizable exercise (I used the Deriver CAS) in row
reduction. The solution is

a = 1, b = 2, c = 4, d = e = f = g = h = j = 0, k = −6.

The desired cubic expression is

A3
n + 2B3

n + 4C3
n − 6AnBnCn.
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Solution II by the proposer.

Consider the number field Q( 3
√

2); viewed as a vector space over Q, this has as
a basis B = {α1, α2, α3} = {1, 3

√
2, 3
√

4}. Let

α =

α1

α2

α3

 ;

then for any element γ ∈ Q( 3
√

2), define the matrix A by

γα = Aα.

The norm of γ (in the field Q( 3
√

2) is then given by (J. S. Chahal, Topics in Number
Theory, Plenum Press, 1988, p. 75)

N(γ) = detA.

For γ = An +Bn
3
√

2 + Cn
3
√

4, we obtain

N(γ) =

∣∣∣∣∣ An Bn Cn
2Cn An Bn
2Bn 2Cn An

∣∣∣∣∣ = A3
n + 2B3

n + 4C3
n − 6AnBnCn.

This immediately gives N(I1) = 1 + 2 + 4− 6 = 1, so I1 is a unit in Q( 3
√

2). Since
norms in a number field obey N(x)N(y) = N(xy), it follows that N(In) = 1 for all
n ∈ Z+, and the cubic above is the desired homogeneous invariant expression.


