PAIRWISE LOCALLY COMPACT BICONVERGENCE SPACES

Jamuna P. Ambasht

A generalization of a topological space into a convergence space [1] and a generalization of a topological space into a bitopological space [4] serve as a forerunner to a biconvergence space [1]. In this paper we show that the existence of a continuous, open mapping from a pairwise locally compact biconvergence space X onto a pairwise weakly Hausdorff biconvergence space Y assures the pairwise local compactness of Y.

<u>Definition 1</u>. (Convergence Space.) We consider a set S of arbitrary elements and associate with each sequence $\{p_n\}$ of elements $p_1, p_2, p_3, \dots, p_n, \dots$ of S of a family of sequences (called the convergent sequences) an element p of S and say that the sequence $\{p_n\}$ converges to p, in symbols,

$$\lim_{n \to \infty} p_n = p \text{ or } \{p_n\} \to p$$

if and only if the following conditions are satisfied.

- (C₁) If $\lim_{n\to\infty} p_n = p$ and $k_1 < k_2 < k_3 < \cdots < k_n < \cdots$ then $\lim_{n\to\infty} p_{k_n} = p$, i.e., if $\{p_n\} \to p$ then its every subsequence must converge to the same limit, $\{p_{k_n}\} \to p$.
- (C₂) If for every n from some point on $p_n = p$, then $\lim_{n \to \infty} p_n = p$.
- (C₃) If the sequence $\{p_n\}$ does not converge to a point (element) p then there exists a subsequence, such that no subsequence of it converges to p.

The set S together with this definition of convergence constitute a *convergence* space, which we denote by (S, C^*) . Here S is a set over which the convergence C^* is defined. If $\{p_n\} \to p$, then p will be called a limit of $\{p_n\}$.

<u>Definition 2</u>. (Limiting Point.) Limiting point of a set A is a point x, such that there exists a sequence $\{x_n\}$ of distinct points of A, such that $\lim_{n\to\infty} x_n = x$.

<u>Definition 3.</u> (Closure.) The closure of a set A is denoted by \overline{A} . A point x of the convergence space (S, C^*) is said to belong to the closure of a subset A if and only if there exists a sequence $\{x_n\}$ in A such that $\{x_n\} \to x$.

<u>Remark 4</u>. $\overline{\overline{A}} \neq \overline{A}$. Refer to Theorem 1.8 (iv) [1].

<u>Remark 5</u>. The above remark points out that every topological space is a convergence space but one can find a convergence space which fails to be a topological space when an open set is defined as follows.

<u>Definition 6</u>. (Open Set.) A set G in a convergence space (S, C^*) is said to be open if and only if no sequence outside G under C^* converges to a point in G.

<u>Definition 7</u>. (Closed Set.) A set F in a convergence space (S, C^*) is said to be closed if and only if F contains the limit points of all convergent sequences contained in F. Equivalently, F is closed if and only if S - F is open.

<u>Definition 8.</u> (Neighborhood.) An open set U in a convergence space (S, C^*) such that $x \in U$ will be called a neighborhood of x and in this context will be written U_x .

<u>Definition 9</u>. (Compact Set.) A set in convergence space (S, C^*) is said to be compact if and only if every open cover has a finite subcover. Using neighborhood, we say that for a set K in the space (S, C^*) and any neighborhood system $\{U_k : k \in K\}$ if K can be covered by a finite number of these neighborhoods, for definiteness

$$K \subseteq \bigcup_i \{ U_{k_i} : j = 1, 2, \cdots, n_0 \}$$

for a fixed integer $n_0 \ge 1$ then K is compact.

<u>Definition 10</u>. (Continuous Mapping.) Let (A, C^*) and (B, C^*) be convergence spaces. A function $f: A \to B$ is said to be continuous at $x \in A$ under the scheme C^* if for every sequence $\{x_n\}$ in A converging to x, the corresponding sequence $\{f(x_n)\}$ in B converges to f(x).

If f is continuous at each and every point of A, then f is called C^* -continuous over A.

<u>Definition 11</u>. (Closed Mapping.) Let (A, C^*) and (B, C^*) be convergence spaces. A function $f: A \to B$ is said to be closed mapping if given any closed subset $F \subseteq A$, in (A, C^*) the set f(F) is closed in (B, C^*) .

This definition is in conformity with the corresponding one in a topological setting, but still there is a fine generalization dormant as stipulated by the remark in section 4, which points out towards the existence of a set H for which $\overline{\overline{H}} \neq \overline{H}$.

<u>Definition 12</u>. (Biconvergence Space.) A biconvergence space (X, A, B) is a set X on which two convergence schemes A and B are defined.

<u>Definition 13</u>. (Weak Hausdorff Biconvergence Space T'_2 .) We define this in the setting of biconvergence space (X, A, B) based on the corresponding definition for bitopological space introduced by Bose [2].

Let (X, A, B) be a biconvergence space. It is said to be a T'_2 space or pairwise weak Hausdorff space if given $K_1 \neq \emptyset$, $K_2 \neq \emptyset$ where $K_1 \cap K_2 = \emptyset$ such that K_1 is an A-compact and K_2 is a B-compact set, there exists U_1 an A-open and U_2 a B-open set such that $K_1 \subseteq U_1$, $K_2 \subseteq U_2$ and $K_i \cap U_j = \emptyset$, $i \neq j$, $i, j \in \{1, 2\}$.

<u>Theorem 14</u>. (Characterization Theorem.) A biconvergence space (X, A, B) is pairwise T'_2 if and only if every A-compact set is B-closed and every B-compact set is A-closed.

<u>Proof.</u> Let (X, A, B) be pairwise T'_2 . Suppose K is an A-compact set. $x \in X \Rightarrow \{x\}$ is B-compact (since every finite set is compact). By Definition 13, pairwise T'_2 -ness implies that there exist U and V respectively A-open and B-open sets with $K \subseteq U$ and $\{x\} \subseteq V$ and $U \cap \{x\} = \emptyset \Rightarrow K \cap \{x\} = \emptyset \Rightarrow x \notin K$. Also, $K \cap V = \emptyset$. Thus, there exists a B-neighborhood of x which has empty intersection with K. Therefore, $x \notin B$ -closure of K. Hence, K is B-closed. Likewise a B-compact set can be shown to be A-closed.

Conversely, suppose that each A-compact set K is B-closed. Thus, $X \setminus K$ is B-open. Suppose $\emptyset \neq K$ is A-compact and $\emptyset \neq J$ is B-compact such that $K \cap J = \emptyset$ (being disjoint). Hence, $J \subseteq X \setminus K = V$. Thus, J is contained in a B-open set V. Similarly K is contained in an A-open set U. Now, $K \cap V = K \cap (X \setminus K) = \emptyset$. Also, $J \cap U = J \cap (X - J) = \emptyset$. Hence, the space is weakly pairwise Hausdorff (T'_2) .

<u>Definition 15</u>. (Pairwise Compact Biconvergence Space.) Swart [3] has defined pairwise compactness in bitopological spaces. If (X, A) and (X, B) are compact convergence spaces, then we say that the biconvergence space (X, A, B) is pairwise compact. $K \subseteq X$ is pairwise compact if it is pairwise compact in the subspace K.

<u>Theorem 16</u>. If (X, A, B) is pairwise compact and T'_2 -biconvergence space then A = B.

<u>Proof.</u> Let F be an A-closed set. Then F is A-compact since X is A-compact. By T'_2 -ness, F is B-closed. Every A-closed set is also B-closed. Similarly, we can show that every B-closed set is also A-closed. Hence, A = B.

<u>Definition 17</u>. (a) (Weakly Continuous.) Let $f: (X, C_X) \to (Y, C_Y)$ be a function from one convergence space to another convergence space. Then f is said to be weakly continuous at $x \in X$ if and only if whenever $\{x_n\} \to x$; $\{f(x_{n_k})\} \to f(x)$ for some subsequence $\{f(x_{n_k})\}$ of the sequence $\{f(x_n)\}$. The function f is weakly continuous on X if and only if f is weakly continuous at each $x \in X$.

(b) (Weak Homeomorphism.) The function f is called a *weak homeomorphism* if and only if f is one-to-one, onto, and weakly continuous, and f maps closed sets to closed sets.

(c) (Cartesian Product Convergence Structure). Let $(X_i, C_{X_i})i = 1, 2$ be convergence spaces and $\prod_{i=1}^2 X_i$ be the Cartesian product of these convergence spaces. Let $\{s_n\}n \in \mathbb{N}$ be a sequence in $\prod_{i=1}^2 X_i$. Define $\{s_n\} \to x$ if and only if $\{\pi_i(s_n)\} \to \pi_i(x)$ with $i = 1, 2, \pi_i$ is the *i*-th projection map. It is easy to check that this defines a convergence structure on $\prod_{i=1}^2 X_i$ and we denote it by

$$C_{\prod_{i=1}^2 X_i}$$

<u>Theorem 17</u>. Let (X, A, B) be T'_2 and pairwise compact. Then every closed one-to-one map from X onto any other pairwise compact biconvergence space is a weak homeomorphism.

<u>Proof.</u> Suppose (X, A, B,) be T'_2 . By Theorem 16, A = B. Let (Y, C, D) be an arbitrary pairwise compact space. Suppose $f: X \to Y$ is a one-to-one, onto, closed map. Then it suffices to show that f is weakly continuous. Let $\{x_n\} \to x$. Without loss of generality, assume that $x \notin \bigcup_{n \in \mathbb{N}} \{x_n\}$.

Suppose $\{f(x_n)\}$ has convergent subsequence, $\{f(x_{n_k})\}$. Then $\{f(x_{n_k})\} \to f(x^*)$ for some x^* in X. Since $f^{-1}\{f(x_{n_k})\} = \{f^{-1}(f(x_{n_k}))\} = \{x_{n_k}\} \to x^*$, and $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ and $\{x_n\} \to x$, we have $x = x^*$. Thus, $\{f(x_n)\}$ has a convergent subsequence which converges to f(x) and therefore f is weakly continuous. Now, suppose $\{f(x_n)\}$ has no convergent subsequence. Then, [5], the set $H = \{(f(x_n), n) : n \in \mathbb{N}\}$ is closed in the product space $Y \times (\mathbb{N} \cup \{w\})$. We shall show that $K_1 = \bigcup_{n \in \mathbb{N}} \{f(x_n)\}$ is closed. Let $\{y_n\}$ be a sequence in K_1 such that $\{y_n\} \to y$. Suppose $y \notin K_1$. Let i_0 be a fixed element in \mathbb{N} . Then $\{(y_n, i_0)\}$ is a sequence in H. Since

$$\overline{\wedge}_1\{(y_n, i_0)\} = \{\overline{\wedge}_1(y_n, i_0)\} = \{y_n\} \to y$$

and

$$\overline{\wedge}_2\{(y_n, i_0)\} = \{\overline{\wedge}_2(y_n, i_0)\} = \{i_0\} \to i_0$$

by the definition of the convergence structure on the product spaces and the fact that H is closed, we have $y \in K_1$; which is a contradiction. Therefore, K_1 is closed. Let $K_2 = \{f(x)\}$. Since K_1 and K_2 are closed and Y is compact, K_1 and K_2 are compact. Since f is a closed map, $f^{-1}(K_1)$ and $f^{-1}(K_2)$ are compact and hence, by Theorem 14, they are also closed. Since $\{x_n\} \to x$ and $\bigcup_{n \in \mathbb{N}} \{x_n\} = f^{-1}(K_1)$, $x \in f^{-1}(K_1)$ because $f^{-1}(K_1)$ is closed. This contradicts the assumption $x \notin \bigcup_{n \in \mathbb{N}} \{x_n\}$.

Definition 18. (Pairwise Locally Compact.) A biconvergence space (X, A, B) is said to be pairwise locally compact at $x \in X$, if there exists an A-open neighborhood U_x of x and a B-open neighborhood V_x of x such that A-cl. U_x is B-compact and B-cl. V_x is A-compact. A biconvergence space (X, A, B) is pairwise locally compact if and only if it is pairwise locally compact at each point $x \in X$.

<u>Theorem 19</u>. If $f:(X, A, B) \to (Y, C, D)$ is continuous open mapping of a pairwise locally compact space (X, A, B) onto a pairwise T'_2 -space (Y, C, D); then Y is pairwise locally compact.

<u>Proof.</u> Let $y \in Y$. Then there exists $x \in X$ such that y = f(x). By pairwise local compactness of X, we have that there exists an A-open neighborhood U_x of x and a B-open neighborhood V_x of x such that A-cl. U_x is B-compact and B-cl. V_x is A-compact. Since f is continuous, $f(A-cl.U_X)$ is D-compact in Y, a pairwise T'_2 -space $\Rightarrow f(A-cl.U_x)$ is C-closed in Y, so $f(A-cl.U_x)$ is C- cl. $f(U_x)$. Now f being open, $f(U_x)$ is C-open and its C-closure is D-compact. Similarly $f(V_x)$ is D-open and it can be shown that its D-closure is C-compact. Thus, Y is pairwise locally compact at y. Since y was arbitrarily chosen in Y, the space Y is pairwise locally compact.

<u>Acknowledgement</u>. The author is grateful to his Ph.D. supervisor Dr. P. Tiwari, Magadh University, Bodh-Gaya. I thank Professor Shing So for contributing to the solution of the weak homeomorphism problem and providing the reference of Brown's paper. I would be failing in my obligations if I missed to adequately thank the referee for suggested revision.

<u>Note</u>. This paper was presented at the annual session of the American Mathematical Society at San Francisco, CA [AMS, Vol. 16, No. 1, Amer. Math. Soc. Abstracts, January 1995, Issue 99.]

References

- 1. J. P. Ambasht, Ph.D. dissertation, Magadh University, Bodh-Gaya, India, 1992.
- S. Bose, "Weak Hausdorff Axiom in Bitopological Space," Bull. Cal. Math. Soc. 72, (1980), 95–106.
- J. Swart, "Total Disconnectedness in Bitopological Spaces ...," Nedr. Akad. Wetensch Series A., 74, (1971), 135–145.
- J. C. Kelly, "Bitopological Spaces," Proc. London Math. Soc. (3), 13, (1963), 71–89.
- R. Brown, "On Sequentially Proper Maps and a Sequential Compactification," J. London Math. Soc. (2), 7, (1973) 515–522.

Jamuna P. Ambasht Department of Mathematics and Computer Science Benedict College Columbia, SC 29204-1086