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PAIRWISE LOCALLY COMPACT BICONVERGENCE SPACES
Jamuna P. Ambasht

A generalization of a topological space into a convergence space [1] and a gen-
eralization of a topological space into a bitopological space [4] serve as a forerunner
to a biconvergence space [1]. In this paper we show that the existence of a con-
tinuous, open mapping from a pairwise locally compact biconvergence space X
onto a pairwise weakly Hausdorff biconvergence space Y assures the pairwise local
compactness of Y.

Definition 1. (Convergence Space.) We consider a set S of arbitrary elements
and associate with each sequence {p,} of elements p1,p2,ps3, - ,Dn, -+ of S of a
family of sequences (called the convergent sequences) an element p of S and say

that the sequence {p,} converges to p, in symbols,
lim p, =p or {pn}—p
n—oo

if and only if the following conditions are satisfied.
(Ch) M limyyoopn =pand kg < ko < k3 < -+ < kyp < --- then lim, o0 Pk, = P,
i.e., if {p,} — p then its every subsequence must converge to the same limit,
{Pr.} — p-
(Cq) If for every n from some point on p, = p, then lim,, o p, = p.
(C5) If the sequence {p, } does not converge to a point (element) p then there exists
a subsequence, such that no subsequence of it converges to p.
The set S together with this definition of convergence constitute a convergence
space, which we denote by (S, C*). Here S is a set over which the convergence C*
is defined. If {p,} — p, then p will be called a limit of {p,}.

Definition 2. (Limiting Point.) Limiting point of a set A is a point x, such
that there exists a sequence {x,} of distinct points of A, such that lim,,_,~ =, = .

Definition 3. (Closure.) The closure of a set A is denoted by A. A point z of
the convergence space (S, C*) is said to belong to the closure of a subset A if and
only if there exists a sequence {z,} in A such that {z,} — «.

Remark 4. A # A. Refer to Theorem 1.8 (iv) [1].
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Remark 5. The above remark points out that every topological space is a con-
vergence space but one can find a convergence space which fails to be a topological
space when an open set is defined as follows.

Definition 6. (Open Set.) A set G in a convergence space (S, C*) is said to be
open if and only if no sequence outside G under C* converges to a point in G.

Definition 7. (Closed Set.) A set F in a convergence space (S,C*) is said
to be closed if and only if F' contains the limit points of all convergent sequences
contained in F'. Equivalently, F' is closed if and only if S — F' is open.

Definition 8. (Neighborhood.) An open set U in a convergence space (S, C*)
such that x € U will be called a neighborhood of z and in this context will be
written U,.

Definition 9. (Compact Set.) A set in convergence space (S, C*) is said to be
compact if and only if every open cover has a finite subcover. Using neighborhood,
we say that for a set K in the space (S, C*) and any neighborhood system {Uy, : k €
K} if K can be covered by a finite number of these neighborhoods, for definiteness

KgUZ{Uk] :j:1727"'7n0}

for a fixed integer ng > 1 then K is compact.

Definition 10. (Continuous Mapping.) Let (4, C*) and (B, C*) be convergence
spaces. A function f: A — B is said to be continuous at © € A under the scheme
C* if for every sequence {z,} in A converging to z, the corresponding sequence
{f(zn)} in B converges to f(z).

If f is continuous at each and every point of A, then f is called C*-continuous
over A.

Definition 11. (Closed Mapping.) Let (A4,C*) and (B,C*) be convergence
spaces. A function f: A — B is said to be closed mapping if given any closed
subset F' C A, in (A, C*) the set f(F) is closed in (B, C™).

This definition is in conformity with the corresponding one in a topological
setting, but still there is a fine generalization dormant as stipulated by the remark
in section 4, which points out towards the existence of a set H for which " 0.

Definition 12. (Biconvergence Space.) A biconvergence space (X, A, B) is a

set X on which two convergence schemes A and B are defined.
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Definition 13. (Weak Hausdorff Biconvergence Space T4.) We define this in
the setting of biconvergence space (X, A, B) based on the corresponding definition
for bitopological space introduced by Bose [2].

Let (X, A, B) be a biconvergence space. It is said to be a Tj space or pairwise
weak Hausdorff space if given Ky # 0, Ky # ) where K; N Ky = () such that K;
is an A-compact and K is a B-compact set, there exists U; an A-open and Us a
B-open set such that K1 C Uy, Ko CUs and K; NU; =0, i # 7, 4,5 € {1,2}.

Theorem 14. (Characterization Theorem.) A biconvergence space (X, A, B) is
pairwise T} if and only if every A-compact set is B-closed and every B-compact set
is A-closed.

Proof. Let (X, A, B) be pairwise T. Suppose K is an A-compact set. © € X =
{z} is B-compact (since every finite set is compact). By Definition 13, pairwise
T3-ness implies that there exist U and V respectively A-open and B-open sets with
KCUand{z}CVandUNn{z}=0=Kn{z}=0=x¢ K. Also, KNV ={.
Thus, there exists a B-neighborhood of z which has empty intersection with K.
Therefore, © ¢ B-closure of K. Hence, K is B-closed. Likewise a B-compact set
can be shown to be A-closed.

Conversely, suppose that each A-compact set K is B-closed. Thus, X \ K is
B-open. Suppose () # K is A-compact and () # J is B-compact such that KN.J = ()
(being disjoint). Hence, J C X \ K = V. Thus, J is contained in a B-open set V.
Similarly K is contained in an A-open set U. Now, KNV = KN (X \ K) = 0.
Also, JNU = JN (X —J) = (. Hence, the space is weakly pairwise Hausdorff (73).

Definition 15. (Pairwise Compact Biconvergence Space.) Swart [3] has defined
pairwise compactness in bitopological spaces. If (X, A) and (X, B) are compact
convergence spaces, then we say that the biconvergence space (X, A, B) is pairwise
compact. K C X is pairwise compact if it is pairwise compact in the subspace K.

Theorem 16. If (X, A, B) is pairwise compact and T3-biconvergence space then
A=B.

Proof. Let F be an A-closed set. Then F'is A-compact since X is A-compact.
By T4-ness, F' is B-closed. Every A-closed set is also B-closed. Similarly, we can
show that every B-closed set is also A-closed. Hence, A = B.

Definition 17. (a) (Weakly Continuous.) Let f:(X,Cx) — (Y,Cy) be a func-

tion from one convergence space to another convergence space. Then f is said to



VOLUME 9, NUMBER 1, WINTER 1997 31

be weakly continuous at € X if and only if whenever {x,} — z; {f(zn,)} — f(2)
for some subsequence {f(zy,)} of the sequence {f(x,)}. The function f is weakly
continuous on X if and only if f is weakly continuous at each z € X.

(b) (Weak Homeomorphism.) The function f is called a weak homeomorphism
if and only if f is one-to-one, onto, and weakly continuous, and f maps closed sets
to closed sets.

(¢) (Cartesian Product Convergence Structure). Let (X;,Cx,)i = 1,2 be
convergence spaces and Hle X; be the Cartesian product of these convergence
spaces. Let {s,}n € N be a sequence in [[-_; X;. Define {s,} — = if and only if
{mi(sn)} — mi(x) with i = 1,2, m; is the i-th projection map. It is easy to check

that this defines a convergence structure on Hle X, and we denote it by

Theorem 17. Let (X, A, B) be T4 and pairwise compact. Then every closed
one-to-one map from X onto any other pairwise compact biconvergence space is a
weak homeomorphism.

Proof. Suppose (X, A, B,) be Ts. By Theorem 16, A = B. Let (Y, C, D) be an
arbitrary pairwise compact space. Suppose f: X — Y is a one-to-one, onto, closed
map. Then it suffices to show that f is weakly continuous. Let {z,} — 2. Without
loss of generality, assume that © ¢ U,en{zn}.

Suppose {f(zn)} has convergent subsequence, {f(zy,)}. Then {f(x,,)} —
f(a*) for some z* in X. Since fH{f(zn,)} = {f"1(f(zn,)} = {70, } — 2*, and
{zn,} is a subsequence of {z,} and {x,} — x, we have x = a*. Thus, {f(z,)}
has a convergent subsequence which converges to f(z) and therefore f is weakly
continuous. Now, suppose {f(zy)} has no convergent subsequence. Then, [5], the
set H = {(f(zn),n) : n € N} is closed in the product space ¥ x (NU {w}). We
shall show that K1 = Upen{f(zn)} is closed. Let {y,} be a sequence in K7 such
that {y,} — y. Suppose y ¢ K. Let i be a fixed element in N. Then {(yn,i0)} is

a sequence in H. Since

A1{(Unsi0)} = {A1(Yn,io)} = {yn} — ¥y
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and
A2{(Ynsi0)} = {A2(Yn,i0)} = {io} — do,

by the definition of the convergence structure on the product spaces and the fact
that H is closed, we have y € K7; which is a contradiction. Therefore, K is closed.
Let Ko = {f(x)}. Since K; and K> are closed and Y is compact, K; and K, are
compact. Since f is a closed map, f~(K;) and f~!(K3) are compact and hence,
by Theorem 14, they are also closed. Since {z,,} — = and Upen{z,} = f~1(K1),
x € f7Y(K;) because f~1(K;) is closed. This contradicts the assumption x ¢
Unen{Zn}

Definition 18. (Pairwise Locally Compact.) A biconvergence space (X, A, B) is
said to be pairwise locally compact at x € X, if there exists an A-open neighborhood
U, of z and a B-open neighborhood V,, of x such that A-cl. U, is B-compact and
B-cl. V,, is A-compact. A biconvergence space (X, A, B) is pairwise locally compact
if and only if it is pairwise locally compact at each point z € X.

Theorem 19. If f:(X,A,B) — (Y,C, D) is continuous open mapping of a
pairwise locally compact space (X, A, B) onto a pairwise Ty-space (Y, C, D); then
Y is pairwise locally compact.

Proof. Let y € Y. Then there exists x € X such that y = f(z). By pairwise
local compactness of X, we have that there exists an A-open neighborhood U, of
x and a B-open neighborhood V,, of x such that A-cl. U, is B-compact and B-cl.
V., is A-compact. Since f is continuous, f(A-cl.Ux) is D-compact in Y, a pairwise
Ti-space = f(A-cl.U,) is C-closed in Y, so f(A-cl.U,) is C- cl. f(U;). Now f
being open, f(U,) is C-open and its C-closure is D-compact. Similarly f(V}) is
D-open and it can be shown that its D-closure is C-compact. Thus, Y is pairwise
locally compact at y. Since y was arbitrarily chosen in Y, the space Y is pairwise
locally compact.
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