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A POLYNOMIAL CURVE OF CONSTANT WIDTH

Stanley Rabinowitz

1. Introduction. Students are usually amazed to learn that there are closed

curves with constant width other than a circle. (The width of a closed convex

curve in the direction θ is the distance between the two support lines that are

perpendicular to the line making an angle θ with the positive x-axis. See Figure 1.

A closed convex curve is said to have constant width if its width is the same in all

directions.)

Figure 1.

The first such curves that a student sees are the Reuleaux Triangle and the

Reuleaux Polygons [2]. These curves, however, are not smooth. These can be mod-

ified to produce related curves of constant width that do have a smooth boundary

[1], [5]. However, the equations for these curves are not easy to write down.

It is the purpose of this note to exhibit a polynomial equation whose graph is

a (noncircular) curve of constant width. We will also find parametric equations for

the curve, thus making it easy for students to graph the curve with, say, a graphing

calculator.
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2. The Support Function. To exhibit the desired curve of constant width,

we will first need to know a little about the support function for a closed convex

curve [1].

Suppose C is a smooth closed convex curve that contains the origin, O, in its

interior. Consider an arbitrary tangent to the curve and drop a perpendicular OH

to this tangent from the origin. (See figure 2.) If the ray
−−→
OH makes an angle θ

with the positive x-axis, then let p(θ) = OH, the signed distance from the origin to

the tangent along the direction θ. The function p(θ) is called the support function

for the curve [4]. Given the support function of a curve, let us see how we can find

the equation for that curve.

Figure 2.

Since the curve is smooth and convex, it will be the envelope of all its tangents.

Let us recall how to find the envelope of a set of lines. The following result is well-

known [6].

Lemma. If f(x, y, α) = 0 is a family of straight lines, then the equation for the

envelope of these lines can be obtained by eliminating the variable α from the two

equations f(x, y, α) = 0 and d
dαf(x, y, α) = 0.

In Figure 2, let the coordinates of point P be (x, y). (This is the point where

the tangent touches the curve.) The coordinates of point H is then seen to be

(p(θ) cos θ, p(θ) sin θ). The equation of the tangent is easily found to be

(1)
y − p(θ) sin θ

x− p(θ) cos θ
= − cot θ.
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Applying the lemma to this family of tangents (with α = θ), we differentiate with

respect to θ. From that result and equation (1), we can solve for x and y in terms

of θ. We thereby obtain the following result [4].

Proposition. If p(θ) is the support function for a closed convex curve C, then

the parametric equations for C are given by

x = p(θ) cos θ − p′(θ) sin θ

y = p(θ) sin θ + p′(θ) cos θ.

3. Curves of Constant Width. The width of a closed convex curve in the

direction θ is easily seen to be w(θ) = p(θ) + p(θ + π). If we could therefore find

a simple function p(θ) such that p(θ) + p(θ + π) is a constant independent of θ,

then we would obtain a curve of constant width. But this is true for the function

p(θ) = a cos2(kθ/2) + b where k is any odd positive integer and a, b ≥ 0, since

cos(φ+ kπ/2) = ± sinφ and sin2 φ+ cos2 φ = 1. This idea was suggested by [3].

If we let p(θ) = a cos2(θ/2) + b, then the curve turns out to be a circle, the

simplest of all curves of constant width.

If we let p(θ) = a cos2(3θ/2) + b, then the curve obtained is not always convex.

Choosing a = 2 and b = 8 gives a pleasing convex curve as shown in Figure 3.
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Figure 3.

In this case, we find that the parametric equations are equivalent to

x = 9 cos θ + 2 cos 2θ − cos 4θ

y = 9 sin θ − 2 sin 2θ − sin 4θ(2)

and the curve is traced as θ varies from 0 to 2π.

To get an equation between x and y, we can proceed as follows. Expanding

everything in terms of c = cos θ and s = sin θ, we get

x = −3 + 9c+ 12c2 − 8c4

y = s(9− 4c− 4c3 + 4cs2).

Squaring the second equation and substituting in s2 = 1−c2 gives us two equations

in the three unknowns x, y, and c. We can therefore eliminate c; but this is very
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messy. Using Mathematica, we can find that resultant. We state the result as the

following theorem.

Theorem. The graph of the polynomial equation

(x2 + y2)4 − 45(x2 + y2)3 − 41283(x2 + y2)2 + 7950960(x2 + y2)

+ 16(x2 − 3y2)3 + 48(x2 + y2)(x2 − 3y2)2

+ (x2 − 3y2)x[16(x2 + y2)2 − 5544(x2 + y2) + 266382] = 7203

is a closed convex curve of constant width (see Figure 3).

4. Open Questions. The polynomial curve found is pretty complicated. Can

it be put in simpler form? Perhaps if we choose as the support function, a linear

combination of functions of the form cos2(kθ/2) for odd k, a simpler result can be

obtained. Our polynomial is of degree 8. Is there one with lower degree? What is

the lowest degree polynomial whose graph is a noncircular curve of constant width?
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