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CONCURRENCY THEOREMS FOR PENTAGRAMS

Larry Hoehn

Although concurrency theorems for cevians of triangles are very well known,

there appear to be few comparable results for either simple polygons or for star

polygons. A short history of regular star polygons, or regular polygrams, is given in

[1, pp. 44–45]. Most of this history is prior to 1678 when the Italian mathematician,

Giovanni Ceva (1647–1736), published his famous Ceva’s theorem. In this note we

give what may be a new proof of Ceva’s theorem and use the same techniques to

prove several results about pentagrams.

By definition a cevian of a triangle is a line segment from one vertex to a point

on the opposite side which is not an endpoint. In the same manner we define a

cevian of a pentagon as a line segment from one vertex to a point on the opposite

side which is not an endpoint. The most ubiquitous examples of cevians of triangles

are medians, angle-bisectors, and altitudes; there does not, however, appear to be

any special named cevians for pentagons. We make frequent use of the following.

Lemma 1. If CD is a cevian of 4ABC (see Figure 1), then

AD

DB
=

AC sinACD

BC sinDCB
.

Figure 1.
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Proof. By the law of sines in 4ADC and 4BDC, respectively, we have

AD/AC = sinACD/ sinADC and DB/BC = sinDCB/ sinBDC. Dividing the

first equation by the second, noting that sinADC = sinBDC, and simplifying

yields the result.

As an application of this lemma, we prove the following:

Theorem 1. (Ceva’s Theorem): If cevians AD, BE, and CF of 4ABC are

concurrent at a point P , then

AF

FB
· BD

DC
· CE

EA
= 1,

and conversely.

Figure 2.

Proof. With notation as in Figure 2 and by Lemma 1, we have

AF

FB
=

PA sin 6 1

PB sin 6 2
,

BD

DC
=

PB sin 6 3

PC sin 6 4
,

and
CE

EA
=

PC sin 6 5

PA sin 6 6
.

By multiplying these three equations, noting that vertical angles are congruent,

and simplifying we obtain the result. With minor variations this proof also holds
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when P is outside 4ABC. The converse, which is sometimes considered a part of

Ceva’s theorem, can be proved in the usual way.

From an examination of approximately thirty available “college geometry”

textbooks, it was found that the methods of proof of Ceva’s theorem involved

either areas of triangles, similar triangles, or else Menelaus’ theorem. None used

the above approach which appears (to this author) to be a much simpler method.

Next we use this approach to prove a generalization of Ceva’s theorem for

pentagons. We note that this result is also given as a problem in [1, p. 67].

Theorem 2. Let ABCDE be a convex pentagon with a point P inside the

pentagon such that there exist cevians from each vertex through P , to points A′,

B′, C ′, D′, and E′ on the opposite sides (see Figure 3), then

AD′

D′B
· BE′

E′C
· CA′

A′D
· DB′

B′E
· EC ′

C ′A
= 1,

and conversely, if four cevians are concurrent at P and the formula holds, then the

fifth cevian is concurrent at P .

Figure 3.
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Proof. Proceeding as in the proof of Ceva’s theorem and using Lemma 1 five

times we have

AD′

D′B
· BE′

E′C
· CA′

A′D
· DB′

B′E
· EC ′

C ′A

=
PA sin 6 1

PB sin 6 2
· PB sin 6 3

PC sin 6 4
· PC sin 6 5

PD sin 6 6
· PD sin 6 7

PE sin 6 8
· PE sin 6 9

PA sin 6 10

= 1.

Conversely, suppose that cevians AA′, BB′, CC ′, and DD′ are concurrent at

P . We must show that EE′ also passes through P . Let EP be extended through

P to meet BC at E∗. Then by the first part of this theorem we have

AD′

D′B
· BE∗

E∗C
· CA′

A′D
· DB′

B′E
· EC ′

C ′A
= 1.

By equating this formula with the formula of our hypothesis, and simplifying we

obtain BE∗/E∗C = BE′/E′C. By adding one to each side of this equation we

obtain BC/E∗C = BC/E′C which implies E∗ = E′. Hence, EE′ is concurrent

with the other cevians.

As an aside we note that we can obtain a trigonometric form of Ceva’s theorem

for pentagons by using the law of sines in 4APB, 4BPC, 4CPD, 4DPE, and

4EPA, respectively (Figure 3) to obtain

sinPAB

sinPBA
=

PB

PA
,

sinPBC

sinPCB
=

PC

PB
,

sinPCD

sinPDC
=

PD

PC
,

sinPDE

sinPED
=

PE

PD
, and

sinPEA

sinPAE
=

PA

PE
.

By multiplying these five equations and simplifying, we have

sinPAB

sinPBA
· sinPBC

sinPCB
· sinPCD

sinPDC
· sinPDE

sinPED
· sinPEA

sinPAE
= 1.
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Next we give a new proof of a result that appeared in [2]. Not only is the new

proof shorter and easier to follow, but it also shows that the result can be easily

generalized.

Theorem 3. Let ABCDEFGHIJ be a pentagram (Figure 4), then

AB

BC
· CD

DE
· EF

FG
· GH

HI
· IJ
JA

= 1.

Figure 4.

Proof. By using the law of sines in 4ABC, 4CDE, 4EFG, 4GHI, and

4IJA, respectively, we have

AB

BC
=

sinACB

sinBAC
,

CD

DE
=

sinCED

sinDCE
,

EF

FG
=

sinEGF

sinFEG
,

GH

HI
=

sinGIH

sinHGI
, and

IJ

JA
=

sin IAJ

sin JIA
.
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By multiplying these five equations, noting that vertical angles are congruent, and

simplifying we obtain the result.

Finally, by combining the above theorems we have the following theorem.

Theorem 4. Let ABCDEFGHIJ be a pentagram (Figure 5) in which the

“diagonals” BG, DI, FA, HC, and JE are concurrent at some point P inside

pentagon ACEGI, then

sin 6 1

sin 6 2
· sin 6 3

sin 6 4
· sin 6 5

sin 6 6
· sin 6 7

sin 6 8
· sin 6 9

sin 6 10
= 1,

and conversely, if four diagonals are concurrent and this formula holds, then the

fifth diagonal is also concurrent at this point.

Figure 5.
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Proof. Let B′, D′, F ′, H ′, and J ′ be the respective intersections of the di-

agonals of the pentagram with the corresponding sides of pentagon ACEGI as

shown in Figure 5. By Lemma 1 for 4ABC, 4CDE, 4EFG, 4GHI, and 4IJA,

respectively, we have

AB′

B′C
=

AB sin 6 1

BC sin 6 2
,

CD′

D′E
=

CD sin 6 3

DE sin 6 4
,

EF ′

F ′G
=

EF sin 6 5

FG sin 6 6
,

GH ′

H ′I
=

GH sin 6 7

HI sin 6 8
, and

IJ ′

J ′A
=

IJ sin 6 9

JA sin 6 10
.

By substituting these five equations into the formula,

AB′

B′C
· CD′

D′E
· EF ′

F ′G
· GH ′

H ′I
· IJ

′

J ′A
= 1

of Theorem 2, and rearranging factors we have

(
AB

BC
· CD

DE
· EF

FG
· GH

HI
· IJ
JA

)

·
(

sin 6 1

sin 6 2
· sin 6 3

sin 6 4
· sin 6 5

sin 6 6
· sin 6 7

sin 6 8
· sin 6 9

sin 6 10

)
= 1.

Since the first set of factors is equal to one by Theorem 3, the result follows.

For the proof of the converse let diagonals BG, DI, FA, HC, and JE meet

the sides of pentagon ACEGI at B′, D′, F ′, H ′, and J ′, respectively. Suppose that

the first four diagonals are concurrent at P and let J∗ be the intersection of EP

and AI. Additionally, let 6 11 = 6 IJJ∗ and 6 12 = 6 J∗JA.

Since AF ′, CH ′, EJ∗, GB′, and ID′ are concurrent at P , then by Theorem 2,

AB′

B′C
· CD′

D′E
· EF ′

F ′G
· GH ′

H ′I
· IJ

∗

J∗A
= 1.
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But

AB′

B′C
=

AB sin 6 1

BC sin 6 2
,

CD′

D′E
=

CD sin 6 3

DE sin 6 4
,

EF ′

F ′G
=

EF sin 6 5

FG sin 6 6
,

GH ′

H ′I
=

GH sin 6 7

HI sin 6 8
, and

IJ∗

J∗A
=

IJ sin 6 11

JA sin 6 12

by Lemma 1. By substituting these five formulas into the formula above and rear-

ranging terms we have

(
AB

BC
· CD

DE
· EF

FG
· GH

HI
· IJ
JA

)

·
(

sin 6 1

sin 6 2
· sin 6 3

sin 6 4
· sin 6 5

sin 6 6
· sin 6 7

sin 6 8
· sin 6 11

sin 6 12

)
= 1.

But the first set of factors equals 1 by Theorem 3. By equating

sin 6 1

sin 6 2
· sin 6 3

sin 6 4
· sin 6 5

sin 6 6
· sin 6 7

sin 6 8
· sin 6 11

sin 6 12
= 1

with the formula in the hypothesis and simplifying we have

sin 6 9

sin 6 10
=

sin 6 11

sin 6 12
.

Hence,

IJ sin 6 9

JA sin 6 10
=

IJ sin 6 11

JA sin 6 12
.

Substituting via Lemma 1 yields

IJ ′

J ′A
=

IJ∗

J∗A
.

Hence, J ′ = J∗. Therefore diagonal EJ passes through P so that all five diagonals

are concurrent.
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By the nature of the above proofs it should be clear that all the theorems can

be generalized to polygrams with an odd number of sides and that some can be

generalized to arbitrary polygrams. This is left to the interested reader.
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