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AN HISTORICAL CONTRADICTION

David L. Clements

1. Introduction. One of the most intriguing aspects of mathematics is the

discovery of a relationship between two seemingly unrelated branches. One such

relationship occurs in the criteria for construction of regular polygons using only

Euclidean tools. The question, inherited from the studies of the ancient Greeks,

may be phrased, “what types of regular polygons may be constructed, using only

the unmarked ruler and compass?” Though the ancients were able to make some

progress into this inquiry, this question wasn’t completely resolved until some 2000

years later.

The ancient Greeks were able to establish that regular polygons of 3, 5, and 15

sides were constructible. By the process of inscribing these polygons in circles and

repeatedly bisecting the sides, regular polygons of 3(2m), 5(2m) or 15(2m) sides may

be obtained, where m is the number of bisections. In the early nineteenth century

Carl Friedrich Gauss made the first addition to this theory by showing the steps

whereby a regular heptadecagon (17-sides) can be constructed using only straight-

edge and compass. He was also able to show in his Disquisitions Arithmeticae that

a regular polygon of p-sides was constructible if p is a Fermat prime or a product

of distinct Fermat primes (or the same multiplied by a power of 2).

Let us recall that a Fermat number is a number of the form 2r + 1. There are

only five numbers of this form that are known to be prime. In fact, they are the

first five Fermat numbers: 3, 5, 17, 257 and 65,537. It seems remarkable that a

purely theoretical classification of a prime number type should play a role in the

classification of polygon construction. The fact that Fermat died about 100 years

before Gauss was born is just as fascinating. Another feature of this breakthrough

was the vast amount of time between the initial discoveries and the “final” dismissal

of the problem.

2. The Historical Question. Was the Gaussian criteria for polygon con-

struction complete? Though many historians of mathematics credit Gauss for the

complete solution, we will find upon further inspection that this was probably not

the case. It is true that Gauss proves in the Disquisitions that p being a Fermat
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prime or product of distinct Fermat primes is a sufficient condition for the construc-

tion of a regular p-sided polygon. To determine whether these are the only ones

that can be constructed, let us consider Gauss’s treatment in his Disquisitions:

“(art. 365) Whenever n − 1 implies prime factors other than 2, we
are always led to equations of higher degree, namely, to one or more cubic
equations when 3 appears once or several times among the prime factors
of n − 1, to equations of the fifth degree when n − 1 is divisible by 5,
etc. WE CAN SHOW WITH ALL RIGOR THAT THESE HIGHER-
DEGREE EQUATIONS CANNOT BE AVOIDED IN ANY WAY NOR
CAN THEY BE REDUCED TO LOWER-DEGREE EQUATIONS. The
limits of the present work exclude the demonstration here, but we issue
this warning lest anyone attempt to achieve geometric constructions for
sections other than the ones suggested by our theory (e.g. sections into 7,
11, 13, 19, etc. parts) and so spend his time uselessly.”

“(art. 366) . . . in order to be able to divide the circle geometrically
into N parts, . . . it is required that N imply no odd prime factor that is
not of the form 2m+1 nor any prime factor of the form 2m+1 more than
once.”

In article 365, Gauss states that the Disquisitions excludes the demonstration

of the requirement of necessity. Article 366 states that if a constructible polygon has

N sides, then every odd prime factor of N is a Fermat prime or product of distinct

Fermat primes. No proof follows this last statement of Gauss’s book. It seems

clear that Gauss makes the conjecture that the conditions he previously proved as

sufficient were also necessary for the construction of regular polygons. However,

he does not follow this with a proof that these are the only polygons that

are constructible. N. D. Kazarinoff points out that, “Gauss never published a

proof of this assertion, nor did he ever outline one in his correspondence or notes.”

It would be a logical fallacy to say that just because we do not have a pub-

lished proof of his statement, that Gauss did not have one. Mathematicians are

usually very precise and clear not to give credit for establishing an idea until it is

accompanied by a proof. The most obvious example would be Pierre de Fermat’s

marginal note in his copy of Diophantus’ Arithmetica that he had found a proof

that the equation xn + yn = zn has no solution for n ≥ 3. The mathematical

community is very quick to mention the fact that no proof from Fermat has ever
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been found. In fact, it has taken the finest mathematicians over 300 years to prove

that Fermat’s conjecture is indeed true.

It would seem very odd then, to give Gauss credit for establishing the necessary

and sufficient conditions of regular polygon construction. However, much of the

mathematical literature on this subject does just this. Consider:

1. From Ribenboim (1991):

“ . . . with the famous result of Gauss (see Disquisitions Arithmeticae

articles 365, 366 – the last ones in the book – as a crowning result for
much of the theory previously developed). He showed that if n ≥ 3 is an
integer, the regular polygon with n sides may be constructed by ruler and
compass, if and only if n = 2kp1p2 · · · ph, where k ≥ 0, h ≥ 0 and p1, . . . ,
ph are distinct odd primes, each being a Fermat number.”

2. From Eves (1990):

“In 1796, the eminent German mathematician Carl Frederick Gauss
developed the theory that showed that a regular polygon having a prime
number of sides can be constructed with Euclidean tools if and only if that
number is of the form f(n) = 22

n

+ 1.”

3. From Burton (1976):

“In the seventh and last section of the Disquisitions Arithmeticae,
Gauss proved that a regular polygon of n sides is so constructible if and
only [if] either

n = 2k or n = 2kp1p2 · · · pr,

where k ≥ 0 and p1, p2, . . . , pr are distinct Fermat primes.”

4. From Coxeter (1961):

“This question was completely answered by Gauss (1777–1855) at
the age of nineteen. Gauss found that a regular n-gon, say {n}, can be so
constructed if and only if the odd prime factors of n are distinct “Fermat
primes” . . . ”

5. From E. T. Bell (1937):

“The young man proved that a straight-edge and compass construc-
tion of a regular polygon having an odd number of sides is possible when,
and only when, that number is either a prime Fermat number (that is a
prime of the form 22

n

+1), or is made up by multiplying together different
Fermat primes . . . His name was Gauss.”
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The apocryphal nature of quotations 3, 4, and 5 were first brought to my

attention by Francis (1985). The first two quotations show the relevance of this

issue today. Similar quotes can be found in many other texts, including Klein and

Boyer.

We have just seen statements saying that Gauss ‘completely answered’,

‘showed’, or ‘proved’ the necessary and sufficient conditions for regular polygon

construction. These statements occur without justification. In light of our previous

discussion, we see that these statements are impossible to justify.

If Gauss did indeed have a proof of the necessary and sufficient conditions

of the constructibility criteria, all indications tell us that he would have made it

known publicly. An immediate result that follows from the criteria is that a regular

nonagon (9-sided) is not constructible since 9 is the product of two like Fermat

primes, 3. In this case the central angle of 40 degrees would not be constructible.

We know, however, that the 120 degree angle is easily constructed. This trivial

example would prove that there is no general method for trisecting an angle.

Certainly, a mathematician of Gauss’s abilities would have realized the above

example. The angle trisection problem was one of the three famous problems of

antiquity, receiving an incredible amount of attention. If Gauss had a proof of this,

he would have wanted to receive credit for it. Let us digress for a moment to the

case of the regular heptadecagon. Gauss was so proud of this accomplishment that

he requested that the figure be inscribed on his tombstone. It only seems reasonable

that if Gauss could have dismissed the possibility of trisecting the angle, he would

have made it known.

To make matters even more interesting, historians usually credit the solution

of the angle trisection problem to Pierre Wantzel in 1837. This is 41 years after

Gauss’s discoveries. Several examples can be cited:

1. From Yates (1942):

“P. L. Wantzel in 1837 was the first to give a rigorous proof of the
impossibility of trisecting the general angle by straightedge and compass.”

2. From Bell (1945):

“These two [trisection and duplication] were not settled till P. L.
Wantzel (A.D. 1814–1848, French) in 1837 obtained necessary and suffi-
cient conditions . . . . Thus the problems were proved impossible.”
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3. From Eves (1990):

“1837-trisection of an angle and duplication of cube proved impossi-
ble. (Chronological Table)”

Other similar quotes may be found in Kline, Jones, Greenberg, and Kazarinoff

(among many others). All this evidence tells us that it was highly unlikely that

Gauss had a proof of the necessity of the aforementioned conditions.

3. Who Deserves Credit. Credit for the conjecture which later turned out

to be true should be given to Gauss (1796). Considerable admiration should be

given to Gauss for his discoveries. However, credit for the proof of the necessity

of the constructibility condition should be given to Wantzel (1837). He gives the

first known proof of the necessity of the conditions. In fact, the proof occurs in the

same article in which he shows the impossibility of trisecting the angle. However,

it is rare in the literature to see this credit given.

Some historians give credit to people besides Wantzel for this discovery. Con-

sider Archibald (1914),: “In the first part of his paper Professor Pierpont shows

‘that the condition which Gauss gave as necessary is in fact such.’ ” Also see

Pierpont.

A more common treatment is to give Gauss credit for the sufficiency state-

ment only. Often no credit is given to anyone when discussing the necessity of the

theorem. Consider:

1. From Encyclopedia Britannica (1992):

“Gauss’s remarkable achievement was to show (at age 18) that it is
possible with ruler and compass to construct a regular n-gon if n is either
a prime Fermat number or a product of different prime Fermat numbers
. . . It was subsequently shown that the converse of Gauss’s theorem holds
and that, therefore these are the only regular polygons that can be so
constructed.”

2. From Apostol (1976):

“Gauss proved that if Fn = p, then a regular polygon of p sides can
be constructed with straightedge and compass.”

Similar quotes may be found in Dudley, Dunham, or Scott.

4. Conclusion. It seems proper to give credit to Gauss for making the

conjecture that a regular polygon of p-sides may be constructed if and only if p is



VOLUME 8, NUMBER 2, SPRING 1996 87

a Fermat prime or a distinct product of Fermat primes. Gauss also deserves credit

for proving the sufficiency of the theorem. Pierre Wantzel deserves the credit for

first demonstrating the necessity of the criteria.

As mathematicians we pride ourselves on exactness and preciseness. It is amaz-

ing that with the attention paid to detail, that such an incredible discovery was

not given its proper attention. One possible reason for this dilemma is that noted

mathematicians made errors (i.e. Klein, Bell, or Coxeter). Their point of view was

accepted as fact by many non-investigative people. As Francis puts it, “Rumor,

reinforced by many years of acceptance and exaggeration, dies hard.”
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