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SEQUENCES OF MAPPINGS AND THE EXPANSIVE PROPERTY

Fred Worth

1. Introduction. Consider a sequence, {fn}, of continuous functions of a

metric space, (X, d), onto another metric space, (Y, d′), that converges pointwise

to another continuous function, f , from X to Y . That is, for each x in X, the

sequence {fn(x)} converges to f(x). Let us further suppose that for each n, fn has

property P . It is an interesting problem to see which properties P also hold for f .

For certain properties, such as continuity and differentiability, this is a standard

question in undergraduate real analysis.

2. Examples. Let fn be a sequence of uniformly continuous functions on

[a, b] that converges uniformly to another function, f . If, given ε > 0, the same δ

works for all n, it is easily seen that f is uniformly continuous. Uniform continuity

is therefore preserved.

Let fn be a sequence of nonincreasing (or nondecreasing) functions. If fn

converges to f , then f is nonincreasing (or nondecreasing). Therefore the property

of being nonincreasing (or nondecreasing) is preserved.

The property of being increasing (or decreasing) is not preserved. To see this

let fn(x) = x/n (or −x/n) and f(x) = 0.

To consider continuity, let

fn(x) =


−1, if x < −1/n;

nx, if −1/n ≤ x ≤ 1/n;

1, if x > 1/n

and

f(x) =


−1, if x < 0;

0, if x = 0;

1, if x > 0.

We see then, that continuity is not preserved under convergence.
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To consider differentiability, let

fn(x) =


−2x− 1/n, if x < −1/n;

nx2, if −1/n ≤ x ≤ 1/n;

2x− 1/n, if x > 1/n

and

f(x) = |2x|.

The sequence converges pointwise to f so we see that differentiability is not pre-

served.

3. Expansiveness. Let {fn} be a sequence of continuous functions that

converges to another continuous function, f . Suppose under repeated iterations,

each fn takes any pair of distinct points “far apart”. Does f always take distinct

pairs of points “far apart”? Suppose each fn has a pair of points that is always

kept “close”. Is there a pair of points that is always kept “close” under repeated

iterations of f?

The settings we will consider for our results are the real line, R, and the unit

circle, S1. It should be noted, however, that many of the results we will consider

are true in more general settings.

In 1950, W. R. Utz, who spent time at the University of Missouri campuses

at Columbia and Rolla, defined what he called “unstable homeomorphisms” [2].

According to Utz, a homeomorphism, f , of a metric space, X, onto itself is called

unstable if there is a positive number, ε, such that if x and y are distinct points of X,

then there exists an integer, n = n(x, y), such that d(fn(x), fn(y)) > ε. It should

be noted that n may be negative. In 1955, Gottschalk and Hedlund suggested the

term expansive homeomorphism in place of unstable homeomorphism [1]. While

“expansive” has come to be accepted for this concept, it seems that “unstable” is

a more descriptive term. In personal conversation with the author, Utz explained

his choice of the term “unstable.” Rather than always moving points farther apart,

such a homeomorphism may move points alternately farther apart and then closer

together. Another advantage is that in other areas, particularly fixed point theory,

the term “expansive” is used to mean a function that always moves points farther
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apart. Also, see the paragraph following Example 3, below, for another result that

is somewhat counter-intuitive to the idea of “expansiveness.” However, we will bow

to convention and use the term “expansive”.

In [4], R. K. Williams gives a good summary of many of the basic results on

expansive homeomorphisms.

4. Definitions and Basic Results. By a mapping, we will mean a continuous

function. A point, x, is a fixed point of f , if f(x) = x. Let n be a positive integer.

Then f0 is the identity function, fn = f(fn−1), and f−n = (f−1)n.

In [5], Williams generalized the concept of expansiveness to any mapping. Let

f be a map of a metric space onto itself. Let x be any point of X. The orbit of x

under f is defined by

O(x) =

∞⋃
n=−∞

fn(x).

A suborbit of x is a doubly-infinite sequence, {xn}∞n=−∞, such that x0 = x and

f(xi) = xi−1 for every integer, i. We say that f is an expansive mapping, with

expansive constant ε, if there exists a positive number, ε, such that for any distinct

points of X, x and y, and any suborbits, {xn} and {yn}, of x and y, there exists an

integer, N , dependent on x, y and the choice of suborbits, such that d(xN , yN ) > ε.

Notice that if ε is an expansive constant for f , then any positive number less than ε

will also be an expansive constant for f . Though this definition is fairly technical,

it essentially says that either the points will be moved “far apart” or they came

from points that were “far apart.”

The following is a well known result that will be very useful in Examples 1 and

2 below.

Theorem. Let f be a mapping of a compact metric space onto itself. If the set

of fixed points of f is infinite, then f is not expansive.

Proof. Let {pn} be a convergent sequence of distinct fixed points of f . Let

ε be a positive number. Then there exist positive integers, m and k, such that

d(pm, pk) < ε. Then {. . . , pm, pm, . . . } and {. . . , pk, pk, . . . } are suborbits, {xn}
and {yn}, of pm and pk, respectively, for which d(xn, yn) < ε for every n. Thus, f

is not expansive.
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We first construct two sequences of expansive mappings, each of which con-

verges to a mapping that is not expansive. The first is on the reals, the second

on the unit circle, S1. Note that all mappings on the unit circle will be defined in

terms of their effect on the central angle. For our metric on S1, with x ≤ y, we use

d(x, y) = min{y − x, 2π + x− y}.
Example 1. Let gn:R → R be defined by gn(x) = (1 + 1/n)x. Now, |gkn(x) −

gkn(y)| = (1 + 1/n)k|x− y|. Thus, each gn is expansive. However, gn converges to g

where g(x) = x. Since the set of fixed points of g restricted to any compact subset

of R is infinite we have that g is not expansive.

We would like to find a sequence of expansive maps of a compact space that

converges to a map that is not expansive. It would seem likely that if such a

sequence were to exist that the sequence of expansive constants would converge to

0. As we shall see, this is not the case.

Example 2. Let fn:S1 → S1 be defined by

fn(x) =

{
(1 + 1/(2n))x, if 0 ≤ x ≤ π;

(3− 1/(2n))(x− 2π) (mod 2π), if π ≤ x ≤ 2π

(see Figure 1).

Claim. Each fn is expansive with expansive constant π/180. (Note – We

are making no claim that this is the largest possible expansive constant. It just

happened to be one of the author’s favorite numbers.)

Proof of Claim. Let x and y be elements of S1 such that 0 < d(x, y) = α <

π/180. We first show that d(fn(x), fn(y)) ≥ (1 + 1/(2n))α. There are four cases.

Case I. 0 ≤ x, y ≤ π.

Case II. π − π/180 ≤ x ≤ π < y ≤ π + π/180.

Case III. π ≤ x < y ≤ 2π.

Case IV. 0 ≤ x ≤ π/180, y ≥ 2π − π/180.

We will do only the proof for Case II. The others are similar.
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Proof for Case II. π − π/180 ≤ x ≤ π < y ≤ π + π/180.

Since f(π) is between f(x) and f(y),

d(fn(x), fn(y)) = d(fn(x), fn(π)) + d(fn(π), fn(y))

= |(1 + 1/(2n))π − (1 + 1/(2n))x|

+ |(3− 1/(2n))y − (3− 1/(2n))π|

= (1 + 1/(2n))(π − x) + (3− 1/(2n))(y − π)

≥ (1 + 1/(2n))(π − x) + (1 + 1/(2n))(y − π)

= (1 + 1/(2n))(y − x)

= (1 + 1/(2n))α.

Therefore, for x and y with d(x, y) = α < π/180, d(fn(x), fn(y)) ≥ (1 +

1/(2n))α. There exists a positive integer k such that (1 + 1/(2n))kα ≥ π/180.

Thus, d(fkn(x), fkn(y)) ≥ π/180. We then have that, for each n, fn is expansive

with expansive constant π/180.

Now, the sequence {fn} converges to f(x), (see Figure 2), defined below.

f(x) =

{
x, if 0 ≤ x ≤ π;

3(x− 2π) (mod 2π), if π ≤ x ≤ 2π.

Since S1 is compact, the fact that f has infinitely many fixed points implies

that f is not expansive.

We now turn to the problem of defining a sequence of mappings that are not

expansive that converges to a mapping that is expansive. An example, again on

S1, with the desired property was given in [6]. We give a simpler example, also on

S1.

Example 3. That F (x) = 2x is expansive follows from the fact that when two

distinct points, x and y, are “close”, i.e., if d(x, y) < π/2, the distance between

them is doubled. This was first proved in [3] by R. F. Williams.

Let

Fn(x) =

{
x, if 0 ≤ x ≤ 1/n;
4nπ−1
2nπ−1 (x− 1/n) + 1

n , if 1/n ≤ x ≤ 2π
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(see Figure 3).

Since the set of fixed points for Fn(x) is infinite, we know that Fn is not

expansive. However, Fn converges to F , given by

F (x) =

{
2x, if 0 ≤ x ≤ π;

2(x− 2π) (mod 2π), if π ≤ x ≤ 2π

(see Figure 4), which is expansive.

Consider the following interesting fact about the function in Example 3. Let

x = pπ/q be a point on S1 where p is a positive integer and q is a positive integer

power of 2. Then F k(x) = 0 for all k such that 2k > q. Also,

{pπ/q ∈ S1 | p ∈ Z+, q = 2n, n ∈ Z+}

is dense in S1. Therefore the function is expansive yet there is a dense subset in

which all points eventually map to (and henceforth stay at) 0.

An example similar to Example 3 (though without the dense subset going to

0) can be constructed on R using virtually the same function by using the second

part of the definition from 1/n to ∞ and on (−∞, 0) letting Fn(x) = 2x.

All of these examples serve to underscore the fact that functions that are

“almost the same” can have very different properties.
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