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A TOPOLOGICAL PROOF OF THE CAYLEY-HAMILTON THEOREM
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The Cayley-Hamilton theorem in linear algebra is generally proven by solely algebraic

means, e.g. the use of cyclic subspaces, companion matrices, etc. [1,2]. In this article

we give a short and basically topological proof of this very algebraic theorem. First the

theorem:

Cayley-Hamilton. Let V be a finite-dimensional vector space over a field, and let

T :V → V be a linear transformation with characteristic polynomial pT (x). Then pT (T ) is

the zero transformation.

The correspondence between linear transformations and matrices allows us to prove

the equivalent matrix form of the theorem.

Cayley-Hamilton (matrix form). Let A be an n×n matrix over a field with character-

istic polynomial pA(x) = det(xI −A), where I is the n× n identity matrix. Then pA(A) is

the zero matrix.

For simplicity, we will prove the result over the field C of complex numbers and, as

promised, use topological techniques. However, essentially the same proof works over any

field (see the remark at the end of the proof).

Notation. Let

Pn = { monic polynomials of degree n over C},

let

Mn = {n× n matrices over C},

and let

Dn = {A ∈ Mn | A is diagonalizable }.

Note that we may identify Pn with Cn andMn with Cn2

, making each into a topological

(in fact metric) space.
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Lemma 1. Let F :Cn → C be a non-constant polynomial mapping. Then if U is open

in C
n, F (U) is open in C.

Proof. (Induction on n).

1) Say F :C → C is a non-constant polynomial mapping, and suppose that we have an

open set U in C. If F (U) is not open then there is a point p in U and a sequence {qi} in C

converging to F (p) such that F−1(qi) ∩ U is empty. Hence, there is a number h > 0 such

that whenever t ∈ F−1(qi) for any i, then |t− p| > h.

For each qi as above, we have the factorization

F (x) − qi = a(x− r1,i)(x − r2,i) · · · (x − rk,i),

where a is the leading coefficient of F and {rj,i}
k
j=1 = F−1(qi); k = degree of F .

Thus,

|F (p)− qi| = |a||p− r1,i| · · · |p− rk,i| > |a|hk;

letting i get large yields a contradiction, so F (U) is open.

2) Now suppose that F :Cn → C is a non-constant polynomial mapping, with U open

in Cn, and n ≥ 2. Since F (x1, x2, . . . , xn) is non-constant, we may assume that it is

non-constant in one of the n coordinates, say xn−1. Let

Ht = {(x1, . . . , xn) ∈ C
n | xn = t}.

Then Ht is naturally identified with Cn−1, and U ∩Ht is open in Ht, i.e. open in Cn−1.

Now,

F (U) =
⋃

t

F (U ∩Ht),

and F |U ∩ Ht can be regarded as a non-constant polynomial in the n − 1 variables

x1, . . . , xn−1; by the inductive hypothesis F (U ∩Ht) is open in C, so F (U) is open.

Corollary. Let F :Cn → C be as in Lemma 1. Then if S is a dense subset of C, F−1(S)

is dense in Cn; in particular F−1(C− {0}) is dense in Cn.

Proof. If F−1(S) is not dense in C
n, there would be a non-empty open set U in the

complement of F−1(S). By Lemma 1, F (U) would be open in the complement of S, which

contradicts the density of S.
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We recall a couple of well-known facts about polynomials, the details of which may be

found in [3]. Let x1, x2, . . . , xn be variables. The kth elementary symmetric function of the

{xi} is defined by

µk(x1, . . . , xn) =
∑

(xi1 · · ·xik ),

where the sum is taken over all subsets {i1, . . . , ik} of {1, 2, . . . , n}. Then

1) If G is a symmetric polynomial in the {xi}, i.e. if

G(x1, . . . , xn) = G(xβ(1), . . . , xβ(n))

for all permutations β on n letters, then G can be written as a polynomial in the elementary

symmetric functions µk(x1, . . . , xn).

2) If f ∈ Pn is given by

f(x) = xn + an−1x
n−1 + · · ·+ a0,

then the coefficients of f are given by elementary symmetric functions of its roots {ri}, i.e.

an−k = (−1)kµk(r1, . . . , rn),

for k = 1, 2, . . . , n.

Lemma 2. Dn is dense in Mn.

Proof. Let △:Pn → C be given by

△(f) =
∏

i<j

(ri − rj)
2

where the {ri} are the roots of f ; note that △(f) vanishes if and only if f has a multiple

root. Clearly △(f) is invariant under any permutation of the roots {ri}, so in light of our

observations 1) and 2) above, △(f) is a polynomial in the coefficients of f . Hence, △ can

be regarded as a polynomial mapping from Cn to C.

Let ∂:Mn → Pn be given by

∂(A) = det(xI −A).

Then ∂ can be regarded as a polynomial mapping from Cn2

to Cn, and the composition

△ · ∂:Mn → C can be viewed as a (non-constant) polynomial mapping from Cn2

to C. By
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the Corollary to Lemma 1, (△·∂)−1(C−{0}) is dense in Mn (i.e. in Cn2

); since a sufficient

criterion for diagonalizability of an n× n matrix is the existence of n distinct eigenvalues,

(△ · ∂)−1(C− {0}) ⊂ Dn, proving the lemma.

Lemma 3. The Cayley-Hamilton theorem holds for diagonalizable matrices.

Proof. Suppose that A is diagonalizable, so A = QDQ−1 for some invertible matrix Q

and some diagonal matrix

D =







r1 0 . . . 0
0 r2 . . . 0
. . . . . .

0 . . . . rn






.

If

pA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

then we have

pA(A) = (QDQ−1)n + an−1(QDQ−1)n−1 + · · ·+ a1(QDQ−1) + a0I

= Q(pA(D))Q−1.

But

pA(D) =







pA(r1) . . . 0
. .

. .

0 . . . pA(rn)






,

which is the zero matrix since the ri are merely the eigenvalues of A.

Proof of the Cayley-Hamilton Theorem. The mapping Ω:Mn × Pn → Mn given by

Ω(A, f(x)) = f(A) is continuous (it is really a polynomial map from Cn2

×Cn to Cn2

), and

the mapping Φ:Mn → Mn×Pn given by Φ(A) = (A, pA(x)) is similarly continuous. Hence,

the composition

Ω · Φ:Mn → Mn,

which is given by Ω · Φ(A) = pA(A), is continuous. By Lemmas 2 and 3, this mapping is

identically zero on a dense subset of Mn, so by continuity vanishes everywhere.
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Remark. For an analogous proof of the Cayley-Hamilton theorem over an arbitrary

field F , first replace F by its algebraic closure F . Then, as in the above proof, identify Pn

and Mn with F
n
and F

n2

respectively, and give each of these spaces the Zariski topology

(in which the closed sets are the zero-loci of finite sets of polynomials [4]). As in our

proof, Lemma 2 is obtained by noting that Dn contains those matrices A for which the

characteristic polynomial pA(x) has distinct roots; this set is open and dense in the Zariski

topology. The remainder of the proof is identical to that given above.
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