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For any set Y we equip the power set P (Y ) with a compact Hausdorff topology by

taking as subbasic open sets all sets of the forms {D ⊆ Y | y ∈ D} and {D ⊆ Y | y /∈ D}

where y varies throughout Y . For any class X of sets, the union of this class is a set ∪X

and its power set P (∪X) may be equipped with a topology as above. Considered as a

subset of P (∪X), X might be both sequentially closed in P (∪X) and a sequential Gδ-set

(the intersection of countably many sequentially open sets) in P (∪X). If this is the case,

we say that X is a Mazur class.

For any set Y , we say that Y is Mazur reducible provided every Mazur class of subsets

of Y that contains all finite subsets of Y must also contain Y itself. A cardinal number m

is said to be Mazur reducible if there is a Mazur reducible set of cardinality m. (If a set is

Mazur reducible, then so are all sets of the same cardinality as this set.)

Mazur [2] proved that all cardinal numbers less than the smallest inaccessible cardinal

number are Mazur reducible. Ulam [3] proved that each nonmeasurable cardinal number is

non-realmeasurable provided 2ω is non-realmeasurable.

For any set Y , we say that Y is modified Mazur reducible provided every Mazur class of

subsets of Y that is finitely additive and contains all finite subsets of Y must also contain

Y itself. As above, we say that a cardinal number m is modified Mazur reducible if there

is a modified Mazur reducible set of cardinality m.

It follows from [1, Theorem 1] that all Mazur reducible cardinals are modified Mazur

reducible.

Theorem. Every nonmeasurable cardinal number is modified Mazur reducible if and

only if 2ω is modified Mazur reducible.

Proof. Since 2ω is nonmeasurable, it remains to prove that if 2ω is modified Mazur

reducible, then m is modified Mazur reducible for every nonmeasurable cardinal number m.

Lemma 1. Let Y denote a set of nonmeasurable cardinality. If X is a Mazur class

of subsets of Y that is finitely additive and contains all finite subsets of Y , then for every
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B ∈ P (Y )−X there is a partition of B into two (disjoint) sets both belonging to P (Y )−X

or both belonging to X .

Proof. Suppose the conclusion is false; i.e., there is a set B ∈ P (Y )−X such that for

every partition S/T of B exactly one of S and T belongs to X . But this defines a measure

on B and hence, is inconsistent with the fact that Y has nonmeasurable cardinality.

Lemma 2. Suppose Y is any set, and X is a Mazur class of subsets of Y that is finitely

additive and contains all finite subsets of Y , and for every B ∈ P (Y )−X there is a partition

of B into two sets both belonging to P (Y ) − X or both belonging to X . There there is

a family {Aξ | ξ ∈ Ξ} of mutually disjoint members of X such that card (Ξ) ≤ 2ω and

Y = ∪{Aξ | ξ ∈ Ξ}.

Proof. Suppose the conclusion is false; i.e., every representation of Y as a union of

mutually disjoint members of X must be formed by a family of cardinality greater than 2ω.

By hypothesis, the set Y partitions into B0
1 , B

0
2 ∈ P (Y ) −X . Take S0 = ∅. Again B0

1 and

B0
2 each partition into sets B′

i ∈ P (Y )−X (1 ≤ i ≤ 4) and we take S1 = ∅ again.

Assume that Sξ ⊆ X and Bξ
n ∈ P (Y )−X have been defined for every ξ < η < ω1 and

satisfy the following conditions:

(1) card Sξ ≤ 2ω, and the sets in Sξ are mutually disjoint;

(2) Sξ′ ⊆ Sξ for ξ′ < ξ;

(3) Bξ
n ∩Bξ′

m = ∅, or Bξ
n ⊆ Bξ′

m and Bξ′

m −Bξ
n ∈ P (Y )−X for ξ′ < ξ; and

(4) (∪Sξ) ∪ (∪nB
ξ
n) = Y , (∪Sξ) ∩ (∪nB

ξ
n) = ∅.

Consider C = {H ∈ P (Y ) − {∅} | there are nξ with H = ∩{Bξ
nξ

| ξ < η}}. By

assumption and condition (1), Y 6= ∪Sξ for every ξ < η. Let p ∈ Y − ∪Sξ for every ξ < η.

Thus, for every ξ < η there is a set Bξ
nξ

containing p. Thus, C 6= ∅. The sets in C are

mutually disjoint since their defining sequences must differ for some ξ < η.

Let Sη = (∪{Sξ | ξ < η} ∪ {H ∈ C | H ∈ X}. Then Y = (∪Sη) ∪ (∪(C − Sη)) and

C − Sη is a countable family of sets in P (Y ) −X because P (Y )−X is a countable union

of sequentially closed sets, X contains all finite subsets of Y , the sets in C are mutually

disjoint, and the pigeon-hole principle holds. Since card (Sη) ≤ 2ω, C − Sη 6= ∅. Applying

the hypothesis to each set in C − Sη yields a countable sequence Bη
1 , B

η
2 , · · · . It is routine

to verify that conditions (1)–(4) are satisfied.

Since Y 6= ∪{∪{Sξ | ξ < ω1}}, there is a p ∈ Y − ∪{∪{Sξ | ξ < ω1}}. Thus, there is

an nξ for every ξ < ω1, for which p ∈ ∩{Bξ
nξ

| ξ < ω1}. Then {Bξ
nξ

−Bξ+1
nξ+1

| ξ < ω1} is an

uncountable, mutually disjoint collection of elements of P (Y )−X .



56 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Because P (Y ) −X is a countable union of sequentially closed sets, one of these sets,

say X0, must therefore contain uncountably many elements of the above mutually disjoint

collection, and any sequence, with distinct terms, of these sets converges to the empty set.

This is a contradiction since the empty set belongs to X , X0 is sequentially closed, and X

is disjoint from X0.

To complete the proof of the theorem, we suppose Y is a set of nonmeasurable cardi-

nality and that X is a Mazur class of subsets of Y that is finitely additive and contains all

finite subsets of Y . By Lemmas 1 and 2, there is a family {Aξ | ξ ∈ Ξ} of mutually disjoint

members of X such that Y = ∪{Aξ | ξ ∈ Ξ} and card (Ξ) ≤ 2ω.

Define a map φ from Y onto Ξ by φ(y) = ξ for y ∈ Aξ. It is easy to check that

Xφ = {Γ ⊆ Ξ | φ−1[Γ] ∈ X} is a Mazur class of subsets of Ξ that is finitely additive and

contains all finite subsets of Ξ.

By hypothesis, 2ω is modified Mazur reducible (and hence, all cardinal numbers less

than 2ω are also) so that Ξ ∈ Xφ. Thus, Y = φ−1[Ξ] ∈ X , which was to be proved.

References

1. R. H. Marty, “Mazur’s Theorem and Banach Measures,” Bull. Acad. Polon. Sci. Ser.

Sci. Math. Astronom. Phys., 25 (1977), 455–456.

2. S. Mazur, “On Continuous Mappings on Cartesian Products,” Fund. Math., 39 (1952),
229–238.

3. S. Ulam, “Zur Masstheorie in der Allgemeinen Mengenlehre,” Fund. Math., 16 (1930),
140–150.


