SEQUENTIAL G_{δ} -SETS AND MEASURES

Roger H. Marty

Cleveland State University

For any set Y we equip the power set P(Y) with a compact Hausdorff topology by taking as subbasic open sets all sets of the forms $\{D \subseteq Y \mid y \in D\}$ and $\{D \subseteq Y \mid y \notin D\}$ where y varies throughout Y. For any class X of sets, the union of this class is a set $\cup X$ and its power set $P(\cup X)$ may be equipped with a topology as above. Considered as a subset of $P(\cup X)$, X might be both sequentially closed in $P(\cup X)$ and a sequential G_{δ} -set (the intersection of countably many sequentially open sets) in $P(\cup X)$. If this is the case, we say that X is a Mazur class.

For any set Y, we say that Y is *Mazur reducible* provided every Mazur class of subsets of Y that contains all finite subsets of Y must also contain Y itself. A cardinal number mis said to be Mazur reducible if there is a Mazur reducible set of cardinality m. (If a set is Mazur reducible, then so are all sets of the same cardinality as this set.)

Mazur [2] proved that all cardinal numbers less than the smallest inaccessible cardinal number are Mazur reducible. Ulam [3] proved that each nonmeasurable cardinal number is non-realmeasurable provided 2^{ω} is non-realmeasurable.

For any set Y, we say that Y is *modified Mazur reducible* provided every Mazur class of subsets of Y that is finitely additive and contains all finite subsets of Y must also contain Y itself. As above, we say that a cardinal number m is modified Mazur reducible if there is a modified Mazur reducible set of cardinality m.

It follows from [1, Theorem 1] that all Mazur reducible cardinals are modified Mazur reducible.

<u>Theorem</u>. Every nonmeasurable cardinal number is modified Mazur reducible if and only if 2^{ω} is modified Mazur reducible.

<u>Proof.</u> Since 2^{ω} is nonmeasurable, it remains to prove that if 2^{ω} is modified Mazur reducible, then *m* is modified Mazur reducible for every nonmeasurable cardinal number *m*.

<u>Lemma 1</u>. Let Y denote a set of nonmeasurable cardinality. If X is a Mazur class of subsets of Y that is finitely additive and contains all finite subsets of Y, then for every

 $B \in P(Y) - X$ there is a partition of B into two (disjoint) sets both belonging to P(Y) - X or both belonging to X.

<u>Proof.</u> Suppose the conclusion is false; i.e., there is a set $B \in P(Y) - X$ such that for every partition S/T of B exactly one of S and T belongs to X. But this defines a measure on B and hence, is inconsistent with the fact that Y has nonmeasurable cardinality.

Lemma 2. Suppose Y is any set, and X is a Mazur class of subsets of Y that is finitely additive and contains all finite subsets of Y, and for every $B \in P(Y) - X$ there is a partition of B into two sets both belonging to P(Y) - X or both belonging to X. There there is a family $\{A_{\xi} \mid \xi \in \Xi\}$ of mutually disjoint members of X such that card $(\Xi) \leq 2^{\omega}$ and $Y = \bigcup \{A_{\xi} \mid \xi \in \Xi\}$.

<u>Proof.</u> Suppose the conclusion is false; i.e., every representation of Y as a union of mutually disjoint members of X must be formed by a family of cardinality greater than 2^{ω} . By hypothesis, the set Y partitions into $B_1^0, B_2^0 \in P(Y) - X$. Take $S_0 = \emptyset$. Again B_1^0 and B_2^0 each partition into sets $B'_i \in P(Y) - X$ $(1 \le i \le 4)$ and we take $S_1 = \emptyset$ again.

Assume that $S_{\xi} \subseteq X$ and $B_n^{\xi} \in P(Y) - X$ have been defined for every $\xi < \eta < \omega_1$ and satisfy the following conditions:

- (1) card $S_{\xi} \leq 2^{\omega}$, and the sets in S_{ξ} are mutually disjoint;
- (2) $S_{\xi'} \subseteq S_{\xi}$ for $\xi' < \xi$;
- (3) $B_n^{\xi} \cap B_m^{\xi'} = \emptyset$, or $B_n^{\xi} \subseteq B_m^{\xi'}$ and $B_m^{\xi'} B_n^{\xi} \in P(Y) X$ for $\xi' < \xi$; and
- (4) $(\cup S_{\xi}) \cup (\cup_n B_n^{\xi}) = Y, (\cup S_{\xi}) \cap (\cup_n B_n^{\xi}) = \emptyset.$

Consider $C = \{H \in P(Y) - \{\emptyset\} \mid \text{ there are } n_{\xi} \text{ with } H = \cap \{B_{n_{\xi}}^{\xi} \mid \xi < \eta\}\}$. By assumption and condition (1), $Y \neq \cup S_{\xi}$ for every $\xi < \eta$. Let $p \in Y - \cup S_{\xi}$ for every $\xi < \eta$. Thus, for every $\xi < \eta$ there is a set $B_{n_{\xi}}^{\xi}$ containing p. Thus, $C \neq \emptyset$. The sets in C are mutually disjoint since their defining sequences must differ for some $\xi < \eta$.

Let $S_{\eta} = (\bigcup \{S_{\xi} \mid \xi < \eta\} \cup \{H \in C \mid H \in X\}$. Then $Y = (\bigcup S_{\eta}) \cup (\bigcup (C - S_{\eta}))$ and $C - S_{\eta}$ is a countable family of sets in P(Y) - X because P(Y) - X is a countable union of sequentially closed sets, X contains all finite subsets of Y, the sets in C are mutually disjoint, and the pigeon-hole principle holds. Since card $(S_{\eta}) \leq 2^{\omega}$, $C - S_{\eta} \neq \emptyset$. Applying the hypothesis to each set in $C - S_{\eta}$ yields a countable sequence $B_{1}^{\eta}, B_{2}^{\eta}, \cdots$. It is routine to verify that conditions (1)–(4) are satisfied.

Since $Y \neq \bigcup \{ \bigcup \{S_{\xi} \mid \xi < \omega_1\} \}$, there is a $p \in Y - \bigcup \{ \bigcup \{S_{\xi} \mid \xi < \omega_1\} \}$. Thus, there is an n_{ξ} for every $\xi < \omega_1$, for which $p \in \bigcap \{B_{n_{\xi}}^{\xi} \mid \xi < \omega_1\}$. Then $\{B_{n_{\xi}}^{\xi} - B_{n_{\xi+1}}^{\xi+1} \mid \xi < \omega_1\}$ is an uncountable, mutually disjoint collection of elements of P(Y) - X.

Because P(Y) - X is a countable union of sequentially closed sets, one of these sets, say X_0 , must therefore contain uncountably many elements of the above mutually disjoint collection, and any sequence, with distinct terms, of these sets converges to the empty set. This is a contradiction since the empty set belongs to X, X_0 is sequentially closed, and Xis disjoint from X_0 .

To complete the proof of the theorem, we suppose Y is a set of nonmeasurable cardinality and that X is a Mazur class of subsets of Y that is finitely additive and contains all finite subsets of Y. By Lemmas 1 and 2, there is a family $\{A_{\xi} \mid \xi \in \Xi\}$ of mutually disjoint members of X such that $Y = \bigcup \{A_{\xi} \mid \xi \in \Xi\}$ and card $(\Xi) \leq 2^{\omega}$.

Define a map ϕ from Y onto Ξ by $\phi(y) = \xi$ for $y \in A_{\xi}$. It is easy to check that $X_{\phi} = \{\Gamma \subseteq \Xi \mid \phi^{-1}[\Gamma] \in X\}$ is a Mazur class of subsets of Ξ that is finitely additive and contains all finite subsets of Ξ .

By hypothesis, 2^{ω} is modified Mazur reducible (and hence, all cardinal numbers less than 2^{ω} are also) so that $\Xi \in X_{\phi}$. Thus, $Y = \phi^{-1}[\Xi] \in X$, which was to be proved.

References

- R. H. Marty, "Mazur's Theorem and Banach Measures," Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 25 (1977), 455–456.
- S. Mazur, "On Continuous Mappings on Cartesian Products," Fund. Math., 39 (1952), 229–238.
- S. Ulam, "Zur Masstheorie in der Allgemeinen Mengenlehre," Fund. Math., 16 (1930), 140–150.