CUBIC AND QUARTIC RESIDUES MODULO A PRIME

Joseph B. Dence
University of Missouri-St. Louis
Thomas P. Dence
Ashland University

1. Residues Modulo A Prime. Standard theorems on quadratic residues form an integral part of any introductory course on the theory of numbers. Seldom is much material presented on residues of higher order. Let p be a prime and let the integer a satisfy $1 \leq a<p$. Then a is said to be a k th order residue of p (or modulo p) if the congruence

$$
x^{k} \equiv a \quad(\bmod p)
$$

has a solution. For example, 6 is a cubic residue (3rd order residue) of 7 since $3^{3} \equiv 6$ $(\bmod 7)$.

Here, we summarize some elementary theorems about cubic and quartic (4th order) residues of prime moduli. The following theorem is central $[1,2]$.

Theorem 1. $x^{k} \equiv a(\bmod p)$ has a solution if and only if $a^{(p-1) / d} \equiv 1(\bmod p)$, where $d=(k, p-1)$. If the congruence has a solution, then it actually has d incongruent solutions modulo p.

Proof. Since p is a prime, it has a primitive root, say r [2]. Then from index arithmetic we have that $x^{k} \equiv a(\bmod p)$ holds if and only if

$$
k \cdot \operatorname{ind}_{r} x \equiv \operatorname{ind}_{r} a \quad(\bmod p-1) .
$$

Let $d=(k, p-1)$ and $z=\operatorname{ind}_{r} x$, that is, $x \equiv r^{z}(\bmod p)$. Then the congruence $k z \equiv \operatorname{ind}_{r} a$ $(\bmod p-1)$ has no solutions (z) or d incongruent solutions modulo $p-1$ if and only if $d+\operatorname{ind}_{r} a$ or $d \mid \operatorname{ind}_{r} a$, respectively. Hence, $x^{k} \equiv a(\bmod p)$ has d incongruent solutions modulo p if and only if $d \mid \operatorname{ind}_{r} a$ or if and only if $(p-1) \operatorname{ind}_{r} a=n(p-1) d$ for some $n \in \mathbb{Z}^{+}$. This is equivalent to $a^{(p-1) / d} \equiv 1(\bmod p)$ since $\operatorname{ind}_{r} 1=0$.

The theorem is a generalization of Euler's Criterion for quadratic residues.
2. Cubic Residues. Throughout this section $k=3$. When $p=5,7,11,13,17,19$ and 23 , the number of cubic residues of these primes are $4,2,10,4,16,6$ and 22 , respectively. A pattern is evident.

Theorem 2. The number of cubic residues of $p>3$ is $(p-1) / 3$ or $p-1$, depending on whether p is of the form $3 j+1$ or $3 j+2$, respectively.

Proof. If $p=3 j+1$, then $d=(k, p-1)=(3,3 j)=3$, so from Theorem $1, a$ is a cubic residue of p if and only if $a^{(p-1) / 3}-1 \equiv 0(\bmod p)$. Lagrange's Theorem [3,4] says that in \mathbb{Z}_{p} this polynomial congruence has at most $(p-1) / 3$ solutions. However, a related theorem says that if $m \mid(p-1)$, then the congruence $x^{m}-1 \equiv 0(\bmod p)$ has the full set of m solutions [4]. Thus, since $(p-1) / 3 \mid(p-1)$, then $a^{(p-1) / 3}-1 \equiv 0(\bmod p)$ has exactly $(p-1) / 3$ solutions in \mathbb{Z}_{p}.

If $p=3 j+2$, then $d=(k, 3 j+1)=(3,3 j+1)=1$ and a is a cubic residue to p if and only if $a^{(p-1)} \equiv 1(\bmod p)$. This holds for all a satisfying $1 \leq a \leq p-1$ by Fermat's Theorem, so there are $p-1$ cubic residues of p.

We let $S_{p}^{(3)}$ denote the set of cubic residues of the prime p. The sets $S_{p}^{(3)}$ for the first few primes are shown in Table 1.

p	2	3	5	7	11	13
$S_{p}^{(3)}$	$\{1\}$	$\{1,2\}$	$\{1,2,3,4\}$	$\{1,6\}$	$\{1,2, \cdots, 10\}$	$\{1,5,8,12\}$

Table 1. Cubic Residues of the First Few Primes

These sets have algebraic structure. We recall that an element α of a field F is an nth root of unity if $\alpha^{n}=1$.

Theorem 3. The cubic residues of a prime p form a multiplicative group.
Proof. Let F be any field and U_{n} the set of all nth roots of unity in F. If $\alpha^{n}=1, \beta^{n}=1$, then $(\alpha \beta)^{n}=\alpha^{n} \beta^{n}=1$, so field multiplication is closed on U_{n}. Associativity is inherited from F. Now let $\alpha \in U_{n}$ be arbitrary, and define $\tau=\alpha^{n-1}$. Then $\alpha \tau=\tau \alpha=\alpha^{n}=1$, so every element in U_{n} has a multiplicative inverse and U_{n} is therefore a group. In particular, let $F=\mathbb{Z}_{p}$ and $p=3 j+1$. Then from Theorems 1 and $2, U_{n}$ is S_{p}^{3}, the set of all j th roots of unity. If $F=\mathbb{Z}_{p}$ and $p=3 j+2$, then U_{n} is $S_{p}^{(3)}$, the set of all $(3 j+1)$ st roots of unity.

Thus, we see from Table 1 that in \mathbb{Z}_{7} the set $S_{7}^{(3)}$ is the set of two square roots of 1 , and in \mathbb{Z}_{13} the set $S_{13}^{(3)}$ is the set of four fourth roots of 1 . We also observe from Table 1 that for
$p>2,\left|S_{p}^{(3)}\right|$ is even. For when $p=3 j+2$, then $\left|S_{p}^{(3)}\right|=p-1$, and when $p=3 j+1$ is prime, then p is actually of the form $6 j+1$, so $(p-1) / 3=2 j$ is even. It is also obvious that $S_{p}^{(3)}$ is a cyclic group since it is either U_{j} or $U_{3 j+1}$, corresponding to $p=3 j+1$ or $p=3 j+2$. The cyclic nature of $S_{p}^{(3)}$ also follows from the observation that $S_{p}^{(3)}$ is a subgroup of \mathbb{Z}_{p}^{*}, the multiplicative group of all nonzero elements of the finite field \mathbb{Z}_{p}, and this latter group is cyclic [5,6].

Corollary 3.1. $S_{p}^{(3)}$ is a cyclic group of even order for $p>2$.
The following theorem shows that if some of the cubic residues of a prime p are known, it is possible to deduce some additional ones.

Theorem 4. If a is a cubic residue of p, then so is $p-a$.
Proof. Suppose $p=3 j+1$ and $a \in S_{p}^{(3)}$; then $a^{(p-1) / 3} \equiv 1(\bmod p)$. Next, since $(p-1) / 3$ is even, then $(p-a)^{(p-1) / 3} \equiv(-a)^{(p-1) / 3} \equiv a^{(p-1) / 3} \equiv 1(\bmod p)$, so $p-a \in S_{p}^{(3)}$. On the other hand, if $p=3 j+2$, then $(p-a)^{p-1} \equiv(-a)^{p-1} \equiv a^{p-1} \equiv 1(\bmod p)$, and thus in this case, also, $p-a \in S_{p}^{(3)}$.

The following two corollaries are immediate from Theorem 4. We let $T_{p}^{(3)}$ denote the sum of all the members of $S_{p}^{(3)}$.

Corollary 4.1. If $p>2$, the elements in $S_{p}^{(3)}$ occur in pairs, where the sum of the members of any pair is p.

Corollary 4.2. For all primes $p \geq 5$ one has

$$
T_{p}^{(3)}= \begin{cases}j p, & \text { if } p=6 j+1 \\ (3 j+1) p / 2, & \text { if } p=3 j+2 .\end{cases}
$$

For example, let $p=43=6 \cdot 7+1$. The cubic residues of 43 are found to be $1,2,4,8,11,16,21,22,27,32,35,39,41,42$; their sum is $301=7 \cdot 43$. In either case in the second corollary we have that $T_{p}^{(3)}$ is an integral multiple of p.

That $p \mid T_{p}^{(3)}$ can be obtained in still another way. Let $m=\left|S_{p}^{(3)}\right|$, where m is either $(p-1) / 3$ or $p-1$. Then $m \mid(p-1)$ and therefore in \mathbb{Z}_{p} the congruence $x^{m}-1 \equiv 0(\bmod p)$ has its full complement of roots and from [4], we can write

$$
x^{m}-1 \equiv\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{m}\right) \quad(\bmod p) .
$$

We see immediately that

$$
\begin{aligned}
& \text { coefficient of } x^{m-1}=-\sum_{i=1}^{m} a_{i} \equiv 0 \quad(\bmod p) \\
& \text { coefficient of } x^{m-2}=\sum_{i<j} a_{i} a_{j} \equiv 0 \quad(\bmod p),
\end{aligned}
$$

and so on. The first congruence gives us $p \mid T_{p}^{(3)}$.
Corollary 4.3. Let $A_{p}^{(3)}$ denote the sum of the squares of all the members of $S_{p}^{(3)}$. Then for $p=5$ and all primes $p>7$, one has $p \mid A_{p}^{(3)}$.

Proof. Denote the members of $S_{p}^{(3)}$ by $a_{1}, a_{2}, \ldots, a_{m}$, where m is either $(p-1) / 3$ or $p-1$. Then write

$$
\begin{aligned}
A_{p}^{(3)} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{m}^{2} \\
& =\left(a_{1}+a_{2}+\cdots+a_{m}\right)^{2}-2 \sum_{i<j} a_{i} a_{j} \\
& =\left[T_{p}^{(3)}\right]^{2}-2 \sum_{i<j} a_{i} a_{j}
\end{aligned}
$$

Corollary 4.2 gives us $p \mid\left[T_{p}^{(3)}\right]^{2}$, and the discussion prior to Corollary 4.3 gives us $p \mid \sum_{i<j} a_{i} a_{j}$, so $p \mid A_{p}^{(3)}$.

Corollary 4.3 fails for $p=3,7$ because these are the only values of p for which $S_{p}^{(3)}=$ $\{1, p-1\}$, so $A_{p}^{(3)}=p^{2}-2 p+2$ and thus $p+\left(p^{2}-2 p+2\right)$.

Finally, we look at one multiplicative property of cubic residues. We let $P_{p}^{(3)}$ denote the product of all the members of $S_{p}^{(3)}$.

Theorem $5.1+P_{p}^{(3)} \equiv 0(\bmod p)$.
Proof. The theorem is obviously true when $p=2$. When $p>2$, the congruence $x^{2} \equiv 1$ $(\bmod p)$ has the solutions $x \equiv 1(\bmod p)$ and $x \equiv p-1(\bmod p)$. In view of Theorem 3 , each element $a_{i} \in S_{p}^{(3)}$ except $1, p-1$ has an inverse a_{j} distinct from itself. Hence,

$$
\prod_{a_{i} \in S_{p}^{(3)}} a_{i} \equiv p-1 \quad(\bmod p)
$$

or $P_{p}^{(3)} \equiv p-1(\bmod p)$, which is equivalent to $1+P_{p}^{(3)} \equiv 0(\bmod p)$.
3. Quartic Residues. We denote the set of all quartic residues of a prime p by $S_{p}^{(4)}$, and the set of all quadratic residues of p by $S_{p}^{(2)}$. Every quartic residue a is automatically a quadratic residue since if $x^{4} \equiv a(\bmod p)$ has a solution, then $y^{2} \equiv a(\bmod p)$ also holds, where $y=x^{2}$. Thus, $S_{p}^{(4)} \subseteq S_{p}^{(2)}$ and we may find all members of $S_{p}^{(4)}$ by squaring the elements of $S_{p}^{(2)}$.

By Euler's Criterion, a is a quadratic residue of $p(p \geq 3)$ if and only if

$$
a^{(p-1) / 2} \equiv 1 \quad(\bmod p)
$$

whereas from Theorem 1 we have that a is a quartic residue of p if and only if

$$
a^{(p-1) / d} \equiv 1 \quad(\bmod p)
$$

where $d=(4, p-1)$. For $p \geq 3$ one has $d=2$ or 4 . When $d=2$ the sets $S_{p}^{(2)}, S_{p}^{(4)}$ are identical, whereas when $d=4$ one has $\left|S_{p}^{(4)}\right|=(1 / 2)\left|S_{p}^{(2)}\right|$. Accordingly, we obtain as the analog of Theorem 2 (for $p \geq 3$).

Theorem 6. The number of quartic residues of p is $(p-1) / 4$ or $(p-1) / 2$, depending on whether $p>2$ is of the form $4 j+1$ or $2 j+1$ (j odd), respectively, and in either case $\left|S_{p}^{(4)}\right|=j$.

The argument of Theorem 3 carries over unaltered to quartic residues. Further, the algebraic argument preceding Corollary 3.1 that was used to show the cyclic nature of $S_{p}^{(3)}$ also applies to $S_{p}^{(4)}$.

Theorem 7. The quartic residues of a prime p form a cyclic group under modular multiplication.

Unlike the case with $S_{p}^{(3)}$, the order of $S_{p}^{(4)}$ may be either odd or even. Table 2 shows the first few cases.

p	2	3	5	7	11	13
$S_{p}^{(4)}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1,2,4\}$	$\{1,3,4,5,9\}$	$\{1,3,9\}$

Table 2. Quartic Residues of the First Few Primes
When $(p-1) / 4$ is not an integer, then $(p-1) / 2$ is an odd integer. Thus, for primes $p=3,7,11,19,23$, and so on, $S_{p}^{(4)}$ is a group of odd order. When $(p-1) / 4$ is an integer, it may be either odd or even. Clearly, we have

Corollary 7.1. $S_{p}^{(4)}$ is a cyclic group of even order if and only if $p=8 j+1$.
According to Theorem $4, p-1$ is always a cubic residue of p. In contrast, from Theorem 1 we see that $p-1$ is a quartic residue if and only if $(p-1) / d$ is even, where $d=(k, p-1)=(4, p-1)$. But now Corollary 7.1 has told us just when $(p-1) / d$ is even, so

Corollary 7.2. $p-1$ is a quartic residue of p if and only if $p=8 j+1$.
The algebraic argument following Corollary 4.2 allows one to also say $p \mid T_{p}^{(4)}$, where $T_{p}^{(4)}$ stands for the sum of all the members of $S_{p}^{(4)}$. Alternately, since $S_{p}^{(4)}$ is cyclic, it has a generator g. From Theorem 6 we have $\left|S_{p}^{(4)}\right|=j$ for $p=4 j+1$ or $p=2 j+1$. The elements of $S_{p}^{(4)}$ can thus be listed modulo p as $\left\{g^{0}, g^{1}, g^{2}, \cdots, g^{j-1}\right\}$, where $g^{0}=1$. Then, if $g \neq 1$,

$$
\begin{aligned}
T_{p}^{(4)} & =1+g^{1}+g^{2}+\cdots+g^{j-1} \\
& =\frac{g^{j}-1}{g-1}
\end{aligned}
$$

Since $S_{p}^{(4)}$ has order j, then $g^{j} \equiv 1(\bmod p)$. It follows that $T_{p}^{(4)} \equiv 0(\bmod p)$.
Theorem 8. For $p>5$ one has $p \mid T_{p}^{(4)}$.
Note the requirement that $p>5$. When $p=2,3$, or 5 , the only quartic residue is 1 , this being so in the last case because of Fermat's Theorem.

In $x^{4} \equiv a(\bmod p)$, as one runs through the nonzero members x of \mathbb{Z}_{p}, a symmetry in the occurrence of the quartic residues a is observed. For example, notice the following distribution in the case of $p=11$.

x	1	2	3	4	5	6	7	8	9	10
a	1	5	4	3	9	9	3	4	5	1

Table 3. Symmetry Between Elements of \mathbb{Z}_{11} and the Corresponding Quartic Residues

Theorem 9. If the quartic residue corresponding to $x \in \mathbb{Z}_{p}$ is a, then the quartic residue corresponding to $p-x$ is also a.

Proof. Direct computation gives

$$
\begin{aligned}
(p-x)^{4} & =p^{4}-4 p^{3} x+6 p^{2} x^{2}-4 p x^{3}+x^{4} \\
& \equiv 0-0+0-0+a(\bmod p)
\end{aligned}
$$

We denote by $P_{p}^{(4)}$ the product of all the members of $S_{p}^{(4)}$. For example, from Table 2 we have

$$
P_{11}^{(4)}=1 \cdot 3 \cdot 4 \cdot 5 \cdot 9=540 \equiv 1 \quad(\bmod 11)
$$

whereas for $p=17$,

$$
P_{17}^{(4)}=1 \cdot 4 \cdot 13 \cdot 16=832 \equiv-1 \quad(\bmod 17)
$$

Theorem 10. For all p one has

$$
P_{p}^{(4)} \equiv \begin{cases}-1(\bmod p), & \text { if } p=8 j+1 \\ +1(\bmod p), & \text { otherwise }\end{cases}
$$

Proof. The theorem is obviously true when $p=2,3,5$. When $p \geq 7$ is not of the form $8 j+1,\left|S_{p}^{(4)}\right|$ is odd and the only member of $S_{p}^{(4)}$ which is its own inverse is 1 by Corollaries 7.1, 7.2. In this case, the members of $S_{p}^{(4)}$, where $\left|S_{p}^{(4)}\right|=2 n+1$, can be paired as follows

$$
\left\{\begin{array}{c}
1 \\
a_{1} \leftrightarrow a_{1}^{-1} \\
a_{2} \leftrightarrow a_{2}^{-1} \\
a_{3} \leftrightarrow a_{3}^{-1} \\
\vdots \\
a_{n} \leftrightarrow a_{n}^{-1}
\end{array}\right.
$$

and hence,

$$
P_{p}^{(4)}=1 \cdot \prod_{i=1}^{n} a_{i} \cdot a_{i}^{-1} \equiv 1 \quad(\bmod p)
$$

On the other hand, if $p=8 j+1$, then $\left|S_{p}^{(4)}\right|$ is of even order, $p-1$ is an element of $S_{p}^{(4)}$, where $\left|S_{p}^{(4)}\right|=2 n+2$, and from the arrangement

$$
\left\{\begin{array}{c}
1 \\
a_{1} \leftrightarrow a_{1}^{-1} \\
a_{2} \leftrightarrow a_{2}^{-1} \\
a_{3} \leftrightarrow a_{3}^{-1} \\
\vdots \\
a_{n} \leftrightarrow a_{n}^{-1} \\
p-1
\end{array}\right.
$$

we obtain

$$
P_{p}^{(4)}=1 \cdot\left(\prod_{i=1}^{n} a_{i} \cdot a_{i}^{-1}\right) \cdot(p-1) \equiv p-1 \equiv-1 \quad(\bmod p) .
$$

Theorem 10 contrasts with Theorem 5. Note also that Theorem 8 is almost analogous to Corollary 4.3

References

1. H. E. Rose, A Course in Number Theory, Oxford University Press, Oxford, (1988), 83-84.
2. K. H. Rosen, Elementary Number Theory and Its Applications, 3rd ed., Addison-Wesley, Reading, (1993), 285-302.
3. T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, (1976), 115.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, (1979), 84-85.
5. J. B. Fraleigh, A First Course in Abstract Algebra, 4th ed., Addison-Wesley, Reading, (1989), 408-409.
6. M. Artin, Algebra, Prentice-Hall, Englewood Cliffs, (1991), 510-513.
