SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
47. [1992, 88; 1993, 94] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Find all the solutions of

$$
(x-1) x(x+1)(x+2)=-1
$$

Comment by the editor.
Due to an error by the editor, a remark by the proposer was omitted from the solution to the problem. At the time the problem was proposed, the proposer noted that if x is an integer, the factorization provided in the solution indicates that the product of four consecutive integers is one less than the square of an integer.
57. [1993, 90] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let s and k be positive integers. Evaluate

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{k} \sum_{j=1}^{n} j^{i}\left(\frac{s}{n}\right)^{i+1}
$$

Solution I by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas; Seung-Jin Bang, Albany, California; and the proposer.

$$
\sum_{j=1}^{n} j^{i}\left(\frac{s}{n}\right)^{i+1}=\sum_{j=1}^{n}\left(\frac{j s}{n}\right)^{i} \frac{s}{n}
$$

is an upper Riemann sum for

$$
\int_{0}^{s} x^{i} d x
$$

Since the product of sums is finite and each sum has a limit,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \prod_{i=1}^{k} \sum_{j=1}^{k} j^{i}\left(\frac{s}{n}\right)^{i+1} & =\prod_{i=1}^{k} \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\frac{j s}{n}\right)^{i} \frac{s}{n} \\
& =\prod_{i=1}^{k} \int_{0}^{s} x^{i} d x \\
& =\prod_{i=1}^{k} \frac{s^{i+1}}{i+1} \\
& =\frac{s^{k(k+3) / 2}}{(k+1)!}
\end{aligned}
$$

Solution II by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin and Frank J. Flanigan, San Jose State University, San Jose, California.

It is known that

$$
\sum_{j=1}^{n} j^{i}
$$

can be represented as a polynomial in n of degree $i+1$ with leading coefficient $1 /(i+1)$.
(See for example: R. S. Luthar, "A Simple Way of Evaluating $\sum_{i=1}^{k} i^{n}$ ", Pi Mu Epsilon Journal, 6 (1976), 282-284.) Using this fact we can represent $\sum_{j=1}^{n} j^{i}$ in the form

$$
\sum_{j=1}^{n} j^{i}=\left(\frac{1}{i+1}\right) n^{i+1}+P(n)
$$

where $P(n)$ is a polynomial of degree i. Since

$$
\frac{P(n)}{n^{i+1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

it follows that

$$
\sum_{j=1}^{n} \frac{j^{i}}{n^{i+1}} \rightarrow \frac{1}{i+1} \text { as } n \rightarrow \infty
$$

Hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \prod_{i=1}^{k} \sum_{j=1}^{n} j^{i}\left(\frac{s}{n}\right)^{i+1} & =\prod_{i=1}^{k} s^{i+1}\left(\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{j^{i}}{n^{i+1}}\right) \\
& =\prod_{i=1}^{k} \frac{s^{i+1}}{i+1}=\frac{s^{k(k+3) / 2}}{(k+1)!}
\end{aligned}
$$

Also solved by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.
58. [1993, 90] Proposed by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Let G be a proper subgroup of \mathbb{R}, the reals under addition. Prove that \mathbb{R} and the complement of G have the same cardinality.

Solution I by the proposer.

Let $\left|G^{c}\right|$ denote the cardinality of the complement of G and H denote the set of all finite linear combinations of elements from G^{c} with integer coefficients (that is, an element of H is of the form

$$
\sum_{i=1}^{m} n_{i} x_{i}
$$

where m is a positive integer, the n_{i} 's are integers and the x_{i} 's are elements from $\left.G^{c}\right)$. Then $G^{c} \subseteq H$ and H is a subgroup of \mathbb{R}. Suppose $\left|G^{c}\right|<|\mathbb{R}|$. Then G is not a subset of H, because if $G \subseteq H$, then $\mathbb{R}=G \cup G^{c} \subseteq H$ and consequently $|H|=|\mathbb{R}|$, which contradicts the fact that $\left|G^{c}\right|<|\mathbb{R}|$. Since G is not a subset of H and H is not a subset of G, there exist elements $g \in G$ and $h \in H$ such that $g \notin H$ and $h \notin G$. If $g+h \in G$, then $h=g+h-g \in G$, but $h \notin G$. Hence $g+h \notin G$. Similarly $g+h \notin H$. Hence $g+h \notin G \cup H$. But $g+h \in \mathbb{R}$. This contradicts the fact that $\mathbb{R}=G \cup H$. Thus $\left|G^{c}\right|=|\mathbb{R}|$.

Solution II by Frank J. Flanigan, San Jose State University, San Jose, California.
We will deduce the above assertion after establishing the following theorem.
Theorem. Let G be a subset of an infinite set S whose complement $G^{c}=S-G$ satisfies $\left|G^{c}\right| \geq|G|$. Then $\left|G^{c}\right|=|S|$.

Proof. The theorem follows from

$$
|S|=\left|G \cup G^{c}\right|=|G|+\left|G^{c}\right|=\left|G^{c}\right|,
$$

since $\left|G^{c}\right|$ is necessarily infinite. (The second equality follows since the sets G and G^{c} are disjoint.)

Now if G is a proper subgroup of \mathbb{R}, then the standard Lagrange decomposition of \mathbb{R} as a union of cosets $x+G$ shows that the complement G^{c} contains at least one such coset $x+G$. Thus

$$
\left|G^{c}\right| \geq|x+G|=|G|
$$

so the theorem applies.
Comment. This approach does not involve uncountability, intermediate cardinalities, the continuum hypothesis, Hamel bases, etc. The assertion holds for any proper subgroup of any infinite group.
59. [1993, 91] Proposed by Ollie Nanyes, Bradley University, Peoria, Illinois.

Find a topology τ_{1} for the real line \mathbb{R}^{1} such that:

1) $\left(\mathbb{R}^{1}, \tau_{1}\right)$ is a second countable, metrizable space and
2) there is a homeomorphism

$$
f:\left(\mathbb{R}^{1}, \tau_{1}\right) \rightarrow\left(\mathbb{R}^{2}, \tau_{2}\right)
$$

where τ_{2} is the product topology $\tau_{1} \times \tau_{1}$.
Solution by the proposer.
Let τ_{1} be the topology generated by $[q, x)$ where q and x are rational. Notice that these basis elements are closed and open. Clearly $\left(\mathbb{R}^{1}, \tau_{1}\right)$, denoted by \mathbb{R}_{q}, is Hausdorff, regular and second countable. Therefore, \mathbb{R}_{q} is metrizable by the Urysohn metrization theorem.

However, we can find a basis \mathcal{B} for \mathbb{R}_{q},

$$
\mathcal{B}=\bigcup_{i=1}^{\infty} \mathcal{B}_{i}
$$

where:

1) for all i, \mathcal{B}_{i} is a disjoint, countable cover of \mathbb{R}^{1} by non-empty closed-open sets,
2) for all i, if $B \in \mathcal{B}_{i}$, there is a countable, disjoint cover $\mathcal{B}(B)$ of B such that

$$
B=\bigcup_{B^{\prime} \in \mathcal{B}(B)} B^{\prime}
$$

and

$$
\mathcal{B}_{i+1}=\bigcup_{B \in \mathcal{B}_{i}}\{\mathcal{B}(B)\}
$$

and
3) for every collection $\left\{B_{i}\right\}$ where, for all $i, B_{i} \in \mathcal{B}_{i}$ and $B_{i+1} \subset B_{i}$, then $\cap_{i} B_{i}$ is a single point set. Then, \mathbb{R}_{q} is homeomorphic to $\mathbb{Z}^{\mathbb{Z}}$ in the product (Tychonoff) topology by the map $g: \mathbb{R}_{q} \rightarrow \mathbb{Z}^{\mathbb{Z}}$ by

$$
g(x)=\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots\right)
$$

where

$$
x \in \bigcap_{j=n_{k}, k \in \mathbb{Z}^{+}} B_{i}^{j}
$$

(with $B_{i}^{k} \in \mathcal{B}_{i}$ for all i).
So, let τ_{2} be the product topology for $\mathbb{R}_{q} \times \mathbb{R}_{q}$; since $\mathbb{Z}^{\mathbb{Z}}$ is homeomorphic to $\mathbb{Z}^{\mathbb{Z}} \times \mathbb{Z}^{\mathbb{Z}}$, \mathbb{R}_{q} is homeomorphic to $\mathbb{R}_{q} \times \mathbb{R}_{q}$.

We can show that the necessary basis \mathcal{B} exists by induction: let $\mathcal{C}=\{[a, b) \mid$ a, b are rational $\}$ and enumerate the rationals by q_{i}. Our induction hypothesis is that $\mathcal{B}_{n} \in \mathcal{C}$. If we let:

$$
\mathcal{B}_{1}=\bigcup_{i}[i, i+1)
$$

then our hypothesis is satisfied for $i=1$. Now assume that $\mathcal{B}_{n} \in \mathcal{C}$. We will describe the construction of \mathcal{B}_{n+1}. If $B \in \mathcal{B}_{n}$, then $B=[a, b)$ by hypothesis. Let $\mathcal{B}^{\prime}(B)=\{[c, d) \in C \mid$ $a \leq c<d<b$ with $|d-c|<1 / n\}$. Certainly if $q_{n} \in[a, b)$ there is a rational d_{n} such that $\left[q_{n}, d_{n}\right) \in \mathcal{B}^{\prime}(B)$. Choose a countably infinite family of disjoint members of $\mathcal{B}^{\prime}(B)$ whose union covers B such that $\left[q_{n}, d_{n}\right) \in \mathcal{B}(B)$ if $q_{n} \in B$. Call this collection $\mathcal{B}(B)$. Define

$$
\mathcal{B}_{n+1}=\bigcup_{B \in \mathcal{B}_{n}}\{\mathcal{B}(B)\}
$$

It is now easy to check that

$$
\mathcal{B}=\bigcup_{i=1}^{\infty} \mathcal{B}_{i}
$$

is our basis which meets requirements 1,2 , and 3 . (It turns out that \mathbb{R}_{q} is homeomorphic to the irrationals in the normal Euclidean subspace topology since the irrationals are homeomorphic to $\mathbb{Z}^{\mathbb{Z}}$. (See F. Willard, General Topology, Addison-Wesley, 1970, Reading, Massachusetts, exercise 24K.)

Acknowledgement by the proposer. I would like to thank an anonymous referee and John Duncan who explained the solution to me.

One incorrect solution was also received.
60. [1993, 91] Proposed by Alvin Tinsley, Central Missouri State University, Warrensburg, Missouri.

Suppose a unit square has its left-hand corner at the origin and its sides along the x $\& y$-axes. Initially, place the base of an equilateral triangle with unit sides on the x-axis between 0 and 1 . Slide the triangle to the left and up, always keeping the two vertices of the base in contact with the x - \& y-axes until the base of the equilateral triangle is on the y-axis between 0 and 1 . What is the equation of the locus of points determined by the third vertex of the triangle?

Solution I by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Leon Hall, University of Missouri-Rolla, Rolla, Missouri; and Rhonda McKee, Central Missouri State University, Warrensburg, Missouri.

Let t be the y-coordinate of the vertex A on the y-axis. Then $\sqrt{1-t^{2}}$ is the x coordinate of the vertex B on the x-axis. For $0<t<1$, the slope of the line through A and B is $-t / \sqrt{1-t^{2}}$, the slope of the perpendicular bisector of side $A B$ is $\sqrt{1-t^{2}} / t$, and the coordinates of the midpoint M of side $A B$ are ($\sqrt{1-t^{2}} / 2, t / 2$). (See figure 1.)
Now the third vertex C lies on the perpendicular bisector of side $A B$ at a distance of $\sqrt{3} / 2$ units from M. So if (x, y) are the coordinates of vertex C we have

$$
\begin{equation*}
y-\frac{t}{2}=\frac{\sqrt{1-t^{2}}}{t}\left(x-\frac{\sqrt{1-t^{2}}}{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y-\frac{t}{2}\right)^{2}+\left(x-\frac{\sqrt{1-t^{2}}}{2}\right)^{2}=\frac{3}{4} \tag{2}
\end{equation*}
$$

Substituting the right hand side of (1) for $(y-t / 2)$ in (2) and simplifying yields

$$
\begin{equation*}
\left(x-\frac{\sqrt{1-t^{2}}}{2}\right)^{2}=\frac{3 t^{2}}{4} \tag{3}
\end{equation*}
$$

Suppose the initial position for vertex C was quadrant I. Then from equations (3) and (1) we get the following parametric equations:

$$
x=\frac{\sqrt{3}}{2} t+\frac{\sqrt{1-t^{2}}}{2}
$$

and

$$
y=\frac{t}{2}+\frac{\sqrt{3}}{2} \sqrt{1-t^{2}}, \quad 0 \leq t \leq 1
$$

(See figure 2.)
Using these equations we can eliminate the radical and solve for t,

$$
t=\sqrt{3} x-y
$$

Substituting $\sqrt{3} x-y$ for t in the parametric equation for y and simplifying yields,

$$
\sqrt{3} y-x=\sqrt{1-(\sqrt{3} x-y)^{2}}
$$

Squaring both sides and simplifying yields

$$
4 x^{2}-4 \sqrt{3} x y+4 y^{2}=1
$$

where $1 / 2 \leq x \leq 1$ and $1 / 2 \leq y \leq 1$.
Next suppose the initial position for vertex C was quadrant IV. Then from equations (3) and (1) we get the following parametric equations:

$$
x=-\frac{\sqrt{3}}{2} t+\frac{\sqrt{1-t^{2}}}{2}
$$

and

$$
y=\frac{t}{2}-\frac{\sqrt{3}}{2} \sqrt{1-t^{2}}, \quad 0 \leq t \leq 1
$$

(See figure 3.)
Using the same technique as in the previous case we get

$$
\sqrt{3} x+y=-t
$$

and
$4 x^{2}+4 \sqrt{3} x y+4 y^{2}=1$
where $-\sqrt{3} / 2 \leq x \leq 1 / 2,-\sqrt{3} / 2 \leq y \leq 1 / 2$, and $(x<0$ or $y<0)$.

Solution II by the proposer; Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas; and J. Sriskandarajah, University of Wisconsin Center-Richland, Richland Center, Wisconsin.

Consider the figure

The triangle slides as θ moves from 0 to 1 . The equations of the non-base sides of the triangle are

$$
y=\tan \left(\frac{2 \pi}{3}-\frac{\pi}{2} \theta\right)\left(x-\cos \frac{\pi}{2} \theta\right)
$$

and

$$
y-\sin \frac{\pi}{2} \theta=\tan \left(\frac{\pi}{3}-\frac{\pi}{2} \theta\right) x
$$

Solving both equations simulataneously (and using some trig identities), the locus of the third vertex of the triangle is

$$
(x, y)=\left(\cos \left(\frac{\pi}{3}-\frac{\pi}{2} \theta\right), \sin \left(\frac{\pi}{3}+\frac{\pi}{2} \theta\right)\right)
$$

Finding θ in terms of x, we have

$$
\frac{\pi}{2} \theta=\frac{\pi}{3}-\arccos x
$$

Thus

$$
\begin{aligned}
y & =\sin \left(\frac{2 \pi}{3}-\arccos x\right) \\
& =\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^{2}} .
\end{aligned}
$$

Hence

$$
2 y-\sqrt{3} x=\sqrt{1-x^{2}}
$$

SO

$$
4 x^{2}-4 \sqrt{3} x y+4 y^{2}-1=0 .
$$

