A NOTE ON MODULE HOMOMORPHISMS

John Koker
University of Wisconsin - Oshkosh

During a recent course in ring theory, I asked a student of mine to find examples of a ring and modules to show that the two conditions for a function to be a module homomorphism are independent of each other. Let R be a (not necessarily commutative) ring and M and N be left R-modules. A function $f: M \rightarrow N$ is said to be an R-module homomorphism if
(1) $f(x+y)=f(x)+f(y)$ for all $x, y \in M$ and
(2) $f(r x)=r f(x)$ for all $x \in M, r \in R$.

Let R be a noncommutative ring and fix $r \in R$ with r not in the center of R. Then $f: R \rightarrow R$ defined by $f(s)=r s$ is a function from the left R-module R to itself which satisfies condition (1). However, due to the noncommutativity, there exists $s, t \in R$ such that $f(t s)=r t s \neq t r s=t f(s)$. Thus (2) fails.

Likewise, we can find an example to satisfy (2) but not (1). Let $R=\mathbb{Z}_{2}$ and let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Define $f: M \rightarrow M$ by $f(0,0)=(0,0)$ and $f(x, y)=(1,1)$ if $(x, y) \neq(0,0)$. It is straight forward to check that (2) is satisfied. But $f[(1,0)+(0,1)]=f(1,1)=(1,1) \neq$ $f(1,0)+f(0,1)$. Hence, (1) fails.

One question this note addresses is when does (2) imply (1)? The converse is more interesting if (2) implies (1), what can be said about M ? Recall that M is a cyclic left R-module if there exists $x \in M$ with $R x=M$.

Lemma 1. Suppose that R is a ring and N is any left R-module. If M is a cyclic left R-module and $f: M \rightarrow N$ is a function which satisfies (2), then f satisfies (1).

Proof. Choose $x \in M$ with $M=R x$. Let $x_{1}, x_{2} \in M$. Then there exists $r_{1}, r_{2} \in R$ with $x_{1}=r_{1} x$ and $x_{2}=r_{2} x$. Thus, $f\left(x_{1}+x_{2}\right)=f\left(r_{1} x+r_{2} x\right)=f\left[\left(r_{1}+r_{2}\right) x\right]=\left(r_{1}+r_{2}\right) f(x)=$ $r_{1} f(x)+r_{2} f(x)=f\left(r_{1} x\right)+f\left(r_{2} x\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$.

Thus, M being cyclic is a sufficient condition for (2) to imply (1). We now exhibit necessary conditions on M. In other words, if $f: M \rightarrow N$ is a function in which (2) implies (1), what can be said about M ?

Suppose that F is a field and V is a vector space over F. The definition of a linear transformation from V to V is the same as for module homomorphisms. Finding examples
to show the independence of (1) and (2) is a common exercise for linear algebra students. Working in this situation aids in answering the above question.

Theorem 2. Suppose that V is a vector space over F. The dimension of V is 1 if and only if any function $f: V \rightarrow V$ which satisfies (2) also satisfies (1).

Proof. If V is of dimension 1, then Lemma 1 provides the result. To prove the converse, fix $0 \neq \alpha \in V$. Define a map $f: V \rightarrow V$ by $f(\beta)=\beta$ if $\beta \in F \alpha$ and $f(\beta)=0$ if $\beta \notin F \alpha$ for all $\beta \in V$. First it is shown that for all $x \in F$ and $\beta \in V, f(x \beta)=x f(\beta)$.

Case 1. Suppose that $x \beta \in F \alpha$. If $x=0$, then $f(x \beta)=0=x f(\beta)$. If $x \neq 0$, then $x^{-1} \in F$. Thus, $\beta=x^{-1}(x \beta) \in F \alpha$ and so $f(x \beta)=x \beta=x f(\beta)$.

Case 2. Suppose that $x \beta \notin F \alpha$. Then $\beta \notin F \alpha$ since $F \alpha$ is closed under scalar multiplication. Therefore $f(x \beta)=0=x f(\beta)$. By hypothesis, f is a linear transformation.

Claim. $V=F \alpha$. If $\beta, \gamma \in V$ with $0 \neq \beta+\gamma \in F \alpha$, then $0 \neq \beta+\gamma=f(\beta+\gamma)=$ $f(\beta)+f(\gamma)$. Therefore $f(\beta) \neq 0$ or $f(\gamma) \neq 0$. Assume that $f(\beta) \neq 0$. Then $\beta \in F \alpha$. Thus, it follows that $\gamma=(\gamma+\beta)-\beta \in F \alpha$. Thus, $0 \neq \beta+\gamma \in F \alpha$ implies that $\beta \in F \alpha$ and $\gamma \in F \alpha$.

Now, for $\delta \in V, 0 \neq \delta+(-\delta+\alpha) \in F \alpha$. Thus, $\delta \in F \alpha$. Hence, $V=F \alpha$ and $\operatorname{dim}(V)=1$.

This proof relied upon the fact that each non-zero element of F had an inverse. Thus, the following generalization is obtained. Recall that a simple left R-module $M \neq 0$ is a module with 0 and M being its only submodules.

Theorem 3. Let R be a division ring (not necessarily commutative), and let M be a left R-module. Then M is simple if and only if every function $f: M \rightarrow M$ which satisfies (2) satisfies (1).

One may wonder if this result generalizes to rings for which some of the elements are not units? A natural place to start is to consider domains. Again, it is not required for these to be commutative. If R is a domain and M is a left R-module, we say that M is torsion-free if its torsion submodule $\{m \in M \mid r m=0$ for some $0 \neq r \in R\}$ is zero. Using these ideas, the following is obtained.

Theorem 4. Suppose that R is a domain and that M is a torsion-free left R-module which has a simple submodule. Then M is simple if and only if every function $f: M \rightarrow M$ which satisfies (2) satisfies (1).

Proof. If M is simple, then M is cyclic and so Lemma 1 gives the result.

Conversely, assume that any function $f: M \rightarrow M$ satisfying (2) satisfies (1). Since $1 \in R, M$ has a simple submodule of the form $R x$ for some $x \in M$. It needs to be shown that $R x=M$. Define $f: M \rightarrow M$ by $f(a)=a$ if $a \in R x$ and $f(a)=0$ if $a \notin R x$ for all $a \in M$.

Let $m \in M$ and $r \in R$. If $r m \notin R x$, then $m \notin R x$. Thus $f(r m)=0=r f(m)$. On the other hand, suppose $r m \in R x$. If $m \in R x$, then $f(r m)=r m=r f(m)$. Finally, suppose that $m \notin R x$. Consider the set $(m: R x)=\{s \in R \mid s m \in R x\}$. This set is a left ideal of R and thus $(m: R x) x$ is a submodule of $R x$. Since $R x$ is simple, $(m: R x) x=0$ or $(m: R x) x=R x$. If $(m: R x) x=R x$, then there exists $s \in(m: R x)$ with $s x=x$. Thus, $(s-1) x=0$. However, M torsion-free implies that $s=1 \in(m: R x)$. This in turn implies that $m \in R x$ which is a contradiciton. Therefore $(m: R x)=0$. The hypothesis $r m \in R x$ and $m \notin R x$ implies that $r=0$. This says that $f(r m)=0=r f(m)$. Therefore f satisfies (2) and so it is a homomorphism.

The proof is completed by showing that $M=R x$, which is similar to the proof of Theorem 2.

This is a natural generalization of Theorem 2 since every torsion-free R-module over a domain R can be embedded in a vector space over Q where Q is a quotient field of R [1, Lemma 4.31].

Reference

1. J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
