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During a recent course in ring theory, I asked a student of mine to find examples of a ring

and modules to show that the two conditions for a function to be a module homomorphism

are independent of each other. Let R be a (not necessarily commutative) ring and M and

N be left R-modules. A function f :M → N is said to be an R-module homomorphism if

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ M and

(2) f(rx) = rf(x) for all x ∈ M , r ∈ R.

Let R be a noncommutative ring and fix r ∈ R with r not in the center of R. Then

f :R → R defined by f(s) = rs is a function from the left R-module R to itself which

satisfies condition (1). However, due to the noncommutativity, there exists s, t ∈ R such

that f(ts) = rts 6= trs = tf(s). Thus (2) fails.

Likewise, we can find an example to satisfy (2) but not (1). Let R = Z2 and let

M = Z2 ⊕Z2. Define f :M → M by f(0, 0) = (0, 0) and f(x, y) = (1, 1) if (x, y) 6= (0, 0). It

is straight forward to check that (2) is satisfied. But f [(1, 0) + (0, 1)] = f(1, 1) = (1, 1) 6=

f(1, 0) + f(0, 1). Hence, (1) fails.

One question this note addresses is when does (2) imply (1)? The converse is more

interesting if (2) implies (1), what can be said about M? Recall that M is a cyclic left

R-module if there exists x ∈ M with Rx = M .

Lemma 1. Suppose that R is a ring and N is any left R-module. If M is a cyclic left

R-module and f :M → N is a function which satisfies (2), then f satisfies (1).

Proof. Choose x ∈ M with M = Rx. Let x1, x2 ∈ M . Then there exists r1, r2 ∈ R with

x1 = r1x and x2 = r2x. Thus, f(x1 + x2) = f(r1x+ r2x) = f [(r1 + r2)x] = (r1 + r2)f(x) =

r1f(x) + r2f(x) = f(r1x) + f(r2x) = f(x1) + f(x2).

Thus, M being cyclic is a sufficient condition for (2) to imply (1). We now exhibit

necessary conditions on M . In other words, if f :M → N is a function in which (2) implies

(1), what can be said about M?

Suppose that F is a field and V is a vector space over F . The definition of a linear

transformation from V to V is the same as for module homomorphisms. Finding examples
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to show the independence of (1) and (2) is a common exercise for linear algebra students.

Working in this situation aids in answering the above question.

Theorem 2. Suppose that V is a vector space over F . The dimension of V is 1 if and

only if any function f :V → V which satisfies (2) also satisfies (1).

Proof. If V is of dimension 1, then Lemma 1 provides the result. To prove the converse,

fix 0 6= α ∈ V . Define a map f :V → V by f(β) = β if β ∈ Fα and f(β) = 0 if β 6∈ Fα for

all β ∈ V . First it is shown that for all x ∈ F and β ∈ V , f(xβ) = xf(β).

Case 1. Suppose that xβ ∈ Fα. If x = 0, then f(xβ) = 0 = xf(β). If x 6= 0, then

x−1 ∈ F . Thus, β = x−1(xβ) ∈ Fα and so f(xβ) = xβ = xf(β).

Case 2. Suppose that xβ 6∈ Fα. Then β 6∈ Fα since Fα is closed under scalar

multiplication. Therefore f(xβ) = 0 = xf(β). By hypothesis, f is a linear transformation.

Claim. V = Fα. If β, γ ∈ V with 0 6= β + γ ∈ Fα, then 0 6= β + γ = f(β + γ) =

f(β) + f(γ). Therefore f(β) 6= 0 or f(γ) 6= 0. Assume that f(β) 6= 0. Then β ∈ Fα. Thus,

it follows that γ = (γ + β) − β ∈ Fα. Thus, 0 6= β + γ ∈ Fα implies that β ∈ Fα and

γ ∈ Fα.

Now, for δ ∈ V , 0 6= δ + (−δ + α) ∈ Fα. Thus, δ ∈ Fα. Hence, V = Fα and

dim(V ) = 1.

This proof relied upon the fact that each non-zero element of F had an inverse. Thus,

the following generalization is obtained. Recall that a simple left R-module M 6= 0 is a

module with 0 and M being its only submodules.

Theorem 3. Let R be a division ring (not necessarily commutative), and let M be a

left R-module. Then M is simple if and only if every function f :M → M which satisfies

(2) satisfies (1).

One may wonder if this result generalizes to rings for which some of the elements are

not units? A natural place to start is to consider domains. Again, it is not required for

these to be commutative. If R is a domain and M is a left R-module, we say that M is

torsion-free if its torsion submodule {m ∈ M | rm = 0 for some 0 6= r ∈ R} is zero. Using

these ideas, the following is obtained.

Theorem 4. Suppose that R is a domain and that M is a torsion-free left R-module

which has a simple submodule. Then M is simple if and only if every function f :M → M

which satisfies (2) satisfies (1).

Proof. If M is simple, then M is cyclic and so Lemma 1 gives the result.
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Conversely, assume that any function f :M → M satisfying (2) satisfies (1). Since

1 ∈ R, M has a simple submodule of the form Rx for some x ∈ M . It needs to be shown

that Rx = M . Define f :M → M by f(a) = a if a ∈ Rx and f(a) = 0 if a 6∈ Rx for all

a ∈ M .

Let m ∈ M and r ∈ R. If rm 6∈ Rx, then m 6∈ Rx. Thus f(rm) = 0 = rf(m). On the

other hand, suppose rm ∈ Rx. If m ∈ Rx, then f(rm) = rm = rf(m). Finally, suppose

that m 6∈ Rx. Consider the set (m : Rx) = {s ∈ R | sm ∈ Rx}. This set is a left ideal

of R and thus (m : Rx)x is a submodule of Rx. Since Rx is simple, (m : Rx)x = 0 or

(m : Rx)x = Rx. If (m : Rx)x = Rx, then there exists s ∈ (m : Rx) with sx = x. Thus,

(s− 1)x = 0. However, M torsion-free implies that s = 1 ∈ (m : Rx). This in turn implies

that m ∈ Rx which is a contradiciton. Therefore (m : Rx) = 0. The hypothesis rm ∈ Rx

and m 6∈ Rx implies that r = 0. This says that f(rm) = 0 = rf(m). Therefore f satisfies

(2) and so it is a homomorphism.

The proof is completed by showing that M = Rx, which is similar to the proof of

Theorem 2.

This is a natural generalization of Theorem 2 since every torsion-free R-module over

a domain R can be embedded in a vector space over Q where Q is a quotient field of R

[1, Lemma 4.31].
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