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1. Abstract. Since the development of the “SOR” method by David Young [3],

there has been a strong interest to use more than one parameter for SOR to improve the

convergence [13], [14], [15] and [16].

D. Young himself considered a two parametric method called “MSOR”. The two pa-

rameters weight the diagonal of positive-definite and consistently ordered 2-cyclic matrix

[6], removing Young’s hypothesis that the eigenvalues of Jacobi iteration matrix must all

be real. We prove for certain cases that when “SOR” diverges, the two parametric method

converges.

2. Introduction. To find the solution vector x to the linear system

(2.1) Ax = b ,

where A is a sparse n× n matrix and b is a given n-vector of complex n-space. Stationary

iterative methods, including SOR, solve the n × n linear system (2.1) by first splitting A

into two terms,

(2.2) A = A0 −A1 ,

where A−10 is easy to compute. Relation (2.2) can be written as:

(2.3) A = A0(I −A−10 A1) = A0(I −B) ,

where B = A−10 A1 is called the iteration matrix. Therefore, the linear system (2.1) can be

written as

(2.4) x = Bx+A−10 b .

Then, by choosing any arbitrary starting vector x0, the equation (2.4) is used to generate

the vector sequence {xk}, constructed as

(2.5) xk+1 = Bxk +A−10 b k = 0, 1, 2, . . . .
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By relation (2.3), it is clear that if {xk} converges at all, it must converge to xsol = A−1b

(vector solution), where Axsol = b. Relation (2.3) shows that {xk} produced by (2.5)

converges to xsol = A−1b for any x0 if and only if ρ(B) < 1, where ρ(B) is the spectral

radius of B [1]. The smaller ρ(B), the faster the sequence {xk} converges to xsol = A−1b

(asymptotically).

The above splitting is called stationary since there is no altering of parameter from

iteration to iteration. It is called one part splitting since each xk+1 depends only on one

previous vector xk.

Examples of one-part stationary splitting are represented in the following important

iteration methods.

(i) Successive Overrelaxation (SOR) method was developed independently by Frankel

[2] and Young [3], [4] in 1950.

S.O.R: Choose

A0 =
1

ω
D − L , A1 =

(
1

ω
− 1

)
D + U

where D is the diagonal part of A and −L, −U , are strictly lower and upper triangular

parts of A respectively. Then, iteration matrix Bω is given by

Bω = (D − ωL)−1
(
(1− ω)D + ωU

)
(ii) Modified Successive Overrelaxation (MSOR) method first considered by Devoge-

laere [5] in 1958. Here is how it works. Consider the matrix A in the following form

A =

(
D1 M
N D2

)
,

where D1 and D2 are square non-singular matrices. Use ω for the “red” equations corre-

sponding to D1 and ω′ for the “black” equations corresponding to D2 then

M.S.O.R: Choose

A0 =

(
1
ωD1 0
N 1

ω′D2

)
.
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Therefore, iteration matrix B(ω,ω′) is defined by

B(ω,ω′) = A−10 A1 =

(
(1− ω)I1 ωF
ω′(1− ω)G ωω′GF + (1− ω′)I2

)
,

where F = −D−11 M and G = −D−12 N . Young [6] has proved that if A is positive-definite,

then

ρ(Bωb
) < ρ(B(ω,ω′)) ,

where ρ(B(ω,ω′)) is virtual spectral radius of B(ω,ω′). Young also showed that B1 (Gauss-

Seidel iteration matrix) converges faster than MSOR if A is positive definite, 0 < ω ≤ 1 and

0 < ω′ ≤ 1. Moussavi generalized Young’s Theorem by considering 0 < ω ≤ 1 or 0 < ω′ ≤ 1

[17]. Mcdowell [7] and Taylor [8] analyzed the convergence of the MSOR method and

obtained slightly better convergence by considering ρ(B(ω,ω′)) instead of ρ(B(ω,ω′)).

In this paper, a comparison of the spectral radii of iteration matrices B(1,ω′) and B(ω,1)

with B1 is done for the case when the eigenvalues of Bj (Jacobi) are not all real (Theorem

3.1). It can also be shown that if A is positive-definite, then iteration matrices B(1,ω′) and

B(ω,1) induce faster convergence than B1 (Gauss-Seidel) for 1 < ω < 2 and 1 < ω′ < 2

(Corollary 3.3). If A is an irreducible, L-matrix with ρ(Bj) < 1, then a relationship can be

found between ρ(B(ω,ω′)) and ρ(B1). A sufficient condition for ρ(B(1,ω′)) < 1 can also be

found (Theorem 3.7). Finally it is shown that if the SOR method is not convergent and the

eigenvalues of SOR are in a certain region in the plane, then iteration matrix B(1,2) induces

rapid convergence of {xk} (Theorem 3.9).

3. Accelerated MSOR Method.

Theorem 3.1. Suppose

A =

(
D1 M
N D2

)
,

where D1 and D2 are non-singular matrices and let ρ(Bj) < 1. Then

(a) If the eigenvalues of B1 with modulus ρ(B1) have the real part less than ρ2(B1), then

ρ(B(ω,1)) > ρ(B1) and ρ(B(1,ω′)) > ρ(B1)
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for all 1 < ω < 2 and 1 < ω′ < 2.

(b) If the eigenvalues of B1 with modulus ρ(B1) have the real part greater than ρ2(B1),

then

ρ(B(ω,1)) > ρ(B1) and ρ(B(1,ω′)) > ρ(B1)

for all 0 < ω < 1 and 0 < ω′ < 1.

(c) If (a) and (b) hold together, then ρ(B1) is the smallest.

Proof. According to Young [6],

(λ+ ω − 1)(λ+ ω′ − 1) = λωω′µ2 ,

where

λ ∈ σ(B(ω,ω′)) and µ ∈ σ(Bj) .

It is clear that B(1,ω′) and B(ω,1) are Jacobi shifting of B1, with parameters ω and ω′,

respectively [12]. Hence if

ξ ∈ σ(B(ω,1)) and ψ ∈ σ(B(1,ω′)) ,

then

ξ = ωµ2 + (1− ω) · 1(3.1.1)

ψ = ω′µ2 + (1− ω′) · 1(3.1.2)

(a) All the eigenvalues of B1 with modulus ρ(B1) are on the arc TBT ′ (Figure 1), where

ST and ST ′ are tangent lines to the circle C with center at the origin and radius ρ(B1). It

is easy to show that x-coordinates of T and T ′ is ρ2(B1). Hence if ω > 1 or ω′ > 1, then

µ2 shifts to ξ or ψ outside the circle C on the line which passes through two points µ2 and

S : (1, 0), respectively. This means that (3.1.1) or (3.1.2) gives a slower convergence. Of

course in this case one could find 0 < ω < 1 or 0 < ω′ < 1 such that

ρ(B(ω,1)) < ρ(B1) and ρ(B(1,ω′)) < ρ(B1) .
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Figure 1.

(b) All the eigenvalues of B1 with modulus ρ(B1), are on the arc TAT ′ (Figure 1). Then

ω < 1 or ω′ < 1 shifts µ2 toward point S : (1, 0) on the line which passes through two points

µ2 and S : (1, 0). Hence (3.1.1) and (3.1.2) will give a slower convergence. Of course in this

case one could find 1 < ω < 2 or 1 < ω′ < 2 such that

ρ(B(ω,1)) < ρ(B1) or ρ(B(1,ω′)) < ρ(B1) .

(c) Clear by part (a) and part (b).

Lemma 3.2. B(ω,1) is a Jacobi shifting of B(1,ω′) or vice versa.

Proof. By (3.1.1) and (3.1.2)

µ2 =
ψ + ω′ − 1

ω′
=
ξ + ω − 1

ω

or equivalently

ψ =
ω′

ω
ξ +

(
1− ω′

ω

)
· 1.

Corollary 3.3. Let

A =

(
D1 M
N D2

)
,

where D1 and D2 are non-singular matrices. If µ1 = ρ(Bj) < 1 and all the eigenvalues of

Bj are real, then

ρ(B(ω,1)) < ρ(B1) or ρ(B(1,ω′)) < ρ(B1)
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for 1 < ω < 2 or 1 < ω′ < 2.

Proof. Since all the eigenvalues of B1 are on the line segment [0, µ2
1], it is clear by

part (a) of Theorem 3.1 that ρ(B1) is greater than ρ(B(ω,1)) or ρ(B(1,ω′)) for 1 < ω < 2 or

1 < ω′ < 2.

Theorem 3.4. Let

A =

(
D1 M
N D2

)
,

where D1 and D2 are non-singular matrices. If A is an irreducible L-matrix and ρ(Bj) < 1,

then

ρ(B(1,ω′)) < ρ(B(ω,ω′))

for 0 < ω < 1 and 0 < ω′ < 1.

Proof. To get B(1,ω′) and B(ω,ω′), split matrix A in the following ways. A = A0 −A1,

where

A0 =

(
D1 0
N 1

ω′D2

)

and

A1 =

(
0 −M
0
(

1
ω′ − 1

)
D2

)

and A = A′0 −A′1, where

A′0 =

(
1
ωD1 0
N 1

ω′D2

)

and

A′1 =

((
1
ω − 1

)
D1 −M

0
(

1
ω′ − 1

)
D2

)
.

Since A is an L-matrix, D1 and D2 are positive, and N and M are non-positive matrices,

thus −M is non-negative. Since 0 < ω < 1 and 0 < ω′ < 1,

(
1

ω
− 1

)
D1 and

(
1

ω
− 1

)
D2
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are positive, hence A′1 ≥ A1 > 0. Since A is an L-matrix and ρ(Bj) < 1, A is an M -matrix

[6]. That is, A−1 ≥ 0. But because A is also irreducible, A−1 > 0 [9]. By Varga’s Theorem

3.15,

ρ(B(1,ω′)) < ρ(B(ω,ω′))

for 0 < ω < 1 and 0 < ω′ < 1 [9].

Corollary 3.5. Under the assumption of Theorem 3.4, if all the eigenvalues of B1 with

modulus ρ(B1) have the real part greater than ρ2(B1), then

ρ(B(ω,ω′)) > ρ(B1)

for 0 < ω < 1 and 0 < ω′ < 1.

Proof. Clear by Theorem 3.4 and part (b) of Theorem 3.1.

Lemma 3.6. Suppose that

A =

(
I1 M
N I2

)
.

Then

(I −B(ω,ω′))
−1

exists if and only if (I −NM)−1 exists.

Proof. Since

B(ω,ω′) =

(
(1− ω)I1 ωM
ω′(1− ω)N ωω′NM + (1− ω′)I2

)
,

I −B(ω, ω
′) =

(
ωI1 −ωM

−ω′(1− ω)N −ωω′NM + ω′I2

)
.

Suppose that the matrix (
X U
Y V

)
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is the inverse of

(I −B(ω,ω′)) .

Then

ωX − ωMY = I1

−ω′(1− ω)NX − ωω′NMY + ω′Y = 0(3.6.3)

ωU − ωMV = 0

−ω′(1− ω)NU − ωω′NMV + ω′V = I2(3.6.4)

By (3.6.3) and (3.6.4) one gets

(I −B(ω,ω′))
−1 =

(
X U
Y V

)

=

(
1
ω I1 + 1−ω

ω M(I −NM)−1N 1
ω′M(I −NM)−1

1−ω
ω (I −NM)−1 1

ω′ (I −NM)−1

)
.

Note that

(I −B(ω,ω′))
−1 and (I +B(ω,ω′))

are commutative.

Theorem 3.7. Let

A =

(
I1 M
N I2

)

and γ be the eigenvalue of (I −NM)−1 with the smallest real part, i.e., 0 < Reγ ≤ Reλ for

all λ ∈ σ((I −NM)−1). Let ρ(Bj) < 1. Then ρ(B(1,ω′)) < 1 if and only if 0 < ω′ < 2Reγ.

Proof. If µ is an eigenvalue of Bj , then µ2 is an eigenvalue of NM . Hence ρ(NM) < 1,

which implies that (I − NM)−1 exists [9]. First we show that (I − NM)−1 is N -stable,
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which means all the eigenvalues of (I −NM)−1 have positive real parts. Suppose that γ is

an eigenvalue of (I −NM)−1, then one can write it in the form

γ =
1

1− µ2
,

where µ ∈ σ(Bj). Let µ = x+ yi. Then

(3.7.5) Reγ =
1− x2 + y2

(1− x2 + y2) + 4x2y2
,

since x2 + y2 < 1, (3.7.5) is positive. Let

H = (I −B(ω,ω′))
−1(I +B(ω,ω′)) = 2(I −B(ω,ω′))

−1 − I .

Then

(3.7.6) H(1,ω′) =

(
I1

2
ω′M(I −NM)−1

0 2
ω′ (I −NM)−1 − I2

)
.

Therefore, the eigenvalues of H(1,ω′) are the same as the eigenvalues of its diagonal subma-

trices. Hence

σ(H(1,ω′)) = 1 ∪
{

2

ω′
ν − 1

∣∣ν ∈ σ((I −NM)−1)

}
.

H(1,ω′) is N -stable if and only if all the real parts of its eigenvalues are positive, that is,

2

ω
Reγ − 1 > 0

or equivalently 0 < ω′ < 2Reγ. Then it is clear that ρ(B(1,ω′)) < 1 (see Theorem 1.5 in [6]).

Lemma 3.8. Let

A =

(
D1 M
N D2

)
,
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where D1 and D2 are non-singular matrices. Let ξ be an eigenvalue of B(1,ω′) and λ be an

eigenvalue of Bω′ , then eigenvalues ξ of B(1,ω′) and λ of Bω′ are related by the following

relation

(3.8.7) ξ =
1

ω′
λ+

(ω′ − 1)2

ω′
1

λ
− (ω′ − 1)(ω′ − 2)

ω′
.

Moreover, ξ = (l1(g(l2(λ)))), where

l1(λ) = ±
(

1

ω′ − 1

)
λ , g(λ) = λ+

1

λ

and

l2(λ) = ± (ω′ − 1)

ω′
λ− (ω′ − 1)(2− ω′)

ω′
.

Proof. Suppose that ψ is an eigenvalue of B(ω,ω′) and λ is an eigenvalue of Bω′ .

According to Young [9],

(ψ + ω − 1)(ψ + ω′ − 1) = ψωω′µ2 and (λ+ ω′ − 1)2 = λω′µ2 ,

which implies

(3.8.8) ψλ(ω′ψ − ωλ) + λω(ω′ − ω)(ω′ − 2) + (ω′ − 1)(ω′λ(ω − 1)− ωψ(ω′ − 1)) = 0 .

Then if ξ is an eigenvalue of B(1,ω′),

λξ(ω′ξ − λ) + (ω′ − 1)(ω′ − 2)λξ + (ω′ − 1)(−ξ(ω′ − 1)) = 0

by (3.8.8). If ξ 6= 0, then (3.8.7) holds. Moreover, suppose that ξ = (l1(g(l2)))(λ), where l1

and l2 are linear functions, say l1(λ) = kλ+ l, l2(λ) = bλ+ c and g(λ) = λ+ 1
λ . Then

(3.8.9) ξ = (l1(g(l2(λ)))) = (bk)λ+
b

kλ+ l
+ (bl + c) .

Comparing (3.8.9) with (3.8.7),

(3.8.10) bk =
1

ω′
,

b

kλ+ l
=

(ω′ − 1)2

ω′
1

λ
, bl + c =

(ω′ − 1)(2− ω′)
ω′

.
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By choosing l = 0 in (3.8.10),

k = ±
(

1

ω′ − 1

)
and b = ± (ω′ − 1)

ω′

that implies

l1(λ) = ±
(

1

ω′ − 1

)
λ , l2(λ) = ± (ω′ − 1)2

ω′
λ− (ω′ − 1)(2− ω′)

ω′

and g(λ) = λ+ 1
λ .

Theorem 3.9. Let

A =

(
D1 M
N D2

)
,

where D1 and D2 are non-singular matrices. Suppose that eigenvalues of SOR lie inside the

shaded area of Figure 2, where the circles C1 and C3 both have radius

1 +R

2

with centers at (
1−R

2
, 0

)
,

(
−1 +R

2
, 0

)
,

respectively. Moreover, the circles C2 and C4 both have radius

1 + 1
R

2

with centers at (
1− 1

R

2
, 0

)
,

(
−1 + 1

R

2
, 0

)
,
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respectively. Then the eigenvalues of B(1,2) are inside the shaded area of Figure 3.

Figure 2.

Furthermore, if 1 < R < 3 + 2
√

2, then ρ(B(1,2)) < 1.

Figure 3.

Proof. Since ω′ = 2, by (3.8.7)

(3.9.11) ξ =
1

2

(
λ+

1

λ

)
.

(3.9.11) can be written in the following form [10],

ξ − 1

ξ + 1
=

(
λ− 1

λ+ 1

)2
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by the following auxiliary transformations

(i) Z1 =
λ− 1

λ+ 1
(ii) Z2 = Z2

1 (iii)
ξ − 1

ξ + 1
= Z2 .

The image of circle which passes through two points (1, 0) and (−R, 0), (i.e., circle C1)

under the transformation (i) is a circle say C, which goes through two points (0, 0) and

(
−R− 1

−R+ 1
, 0

)
.

The image of circle C under the transformation (ii) is a cardioid with the following equation

ρ =
(R− 1)2

(R+ 1)2
(1 + cosϕ) .

Finally, the image of this cardioid under the transformation (iii) is a symmetric Joukowski

airfoil with respect to the real axis, which passes through two points (1, 0) and

(− 1
2 (R+ 1

R ), 0) [11] (Figure 4).
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Figure 4.

Obviously the image of the circle C2 under transformation (i) is the circle C. Then

the image of the circle C1 and C2 under transformation (3.9.11) coincide. Also it is clear

that all the points outside the circle C2 and inside of the circle C1 (i.e., all points belong

to C1−C2 ) map inside the Joukowski airfoil. The same argument holds for circles C3 and

C4, i.e., all points belong to C3 −C4 map inside the symmetric Joukowski airfoil about the

real axis which passes through the points (−1, 0) and (− 1
2 (R+ 1

R ), 0).
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