
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

33. [1991, 93] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

If A, B, and C are the angles of a triangle, prove that

cotA+ cotB + cotC ≥
√
3 .

Under what conditions will equality hold?

Solution I by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

It is known that

cotA+ cotB + cotC ≥ (a2 + b2 + c2)(a+ b+ c)
√
3

9abc

(where a is the length of the side of triangle ABC opposite vertex A, b is the length of the
side of triangle ABC opposite vertex B, and c is the length of the side of triangle ABC
opposite vertex C), with equality holding if and only if the triangle is equilateral. [See the
Solution to Problem E1861 on pp. 724–725 of the June–July 1967 issue of The American
Mathematical Monthly.]

By the Arithmetic Mean-Geometric Mean Inequality

a2 + b2 + c2

3
≥ 3

√
a2b2c2 = (abc)

2

3

and

a+ b+ c

3
≥ 3

√
abc = (abc)

1

3

with equality holding if and only if a = b = c. Thus

a2 + b2 + c2

3
· a+ b+ c

3
≥ abc
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so

(a2 + b2 + c2)(a+ b+ c)
√
3

9abc
≥

√
3 ,

with equality holding if and only if a = b = c.
It follows that

cotA+ cotB + cotC ≥
√
3

with equality holding if and only if triangle ABC is equilateral.

Solution II by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Our solution will use the following known results.

(1) cotA+ cotB + cotC ≥ 3

5
(cscA+ cscB + cscC)− 1

5

√
3

with equality if and only if the triangle is equilateral.

(2) cscA+ cscB + cscC ≥ 2
√
3

with equality if and only if the triangle is equilateral.

[For a proof of (1) see the Solution to Problem E2323 on pp. 1040-1041 of the November
1972 issue of The American Mathematical Monthly and for a proof of (2) see the Solution to
Problem E1861 on pp. 724–725 of the June–July 1967 issue of The American Mathematical
Monthly.]

It follows from (1) and (2) that

cotA+ cotB + cotC ≥ 3

5
(2
√
3)− 1

5

√
3 =

√
3

with equality if and only if the triangle is equilateral.

Solution III by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Let ω denote the Brocard angle of triangle ABC. Then

(1) cotω = cotA+ cotB + cotC

and

(2) ω ≤ π

6
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with equality in (2) if and only if triangle ABC is an equilateral triangle. [See pp. 174–175
of Davis; Modern College Geometry; Addison-Wesley Publishing Company, Inc.; Reading,
Massachusetts; 1957.] Since cotangent is a continuous decreasing function in (0, π) ,

cotω ≥ cot
π

6
.

Thus

cotA+ cotB + cotC = cotω ≥ cot
π

6
=

√
3 .

Also equality holds if and only if triangle ABC is equilateral.

Solution IV by Russell Euler, Northwest Missouri State University, Maryville, Mis-
souri and Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin
(independently).

cotA+ cotB =
cosA

sinA
+

cosB

sinB

=
cosA sinB + sinA cosB

sinA sinB

=
sin(A+B)

sinA sinB

=
sin(π − C)

(cos(A−B)− cos(A+B))/2

=
2 sinC

cos(A−B)− cos(π − C)

=
2 sinC

cos(A−B) + cosC

≥ 2 sinC

1 + cosC

= 2 tan
C

2
.
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Therefore,

cotA+ cotB + cotC ≥ 2 tan
C

2
+ cotC

= 2 tan
C

2
+

1

tan 2
(

C

2

)

= 2 tan
C

2
+

1− tan2 C

2

2 tan C

2

=
3 tan2 C

2 + 1

2 tan C

2

.

Hence, since a2 + b2 ≥ 2ab for all real numbers a and b,

cotA+ cotB + cotC ≥ 2
√
3 tan C

2

2 tan C

2

=
√
3 .

Clearly, equality will hold iff
√
3 tan C

2 = 1 and cos(A−B) = 1. This system has

A = B = C =
π

3

as its solution.

Solution V by Russell Euler, Northwest Missouri State University, Maryville, Missouri
and Richard Edmundson (junior), University of Texas-Pan American, Edinburg, Texas
(independently).

For any function f such that f ′′(x) > 0 for all x in the domain of f ,

f

(

x+ y + z

3

)

≤ f(x) + f(y) + f(z)

3
.

So, for f(x) = cotx on (0, π2 ),

cotA+ cotB + cotC

3
≥ cot

(

A+B + C

3

)

.
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That is,

cotA+ cotB + cotC ≥ 3 cot
π

3
=

√
3 ,

and equality holds only for equilateral triangles.

Solution VI by Russell Euler, Northwest Missouri State University, Maryville, Mis-
souri and Joe Howard, New Mexico Highlands University, Las Vegas, New Mexico (inde-
pendently).

Since A+B + C = π, it suffices to minimize

f(A,B) = cotA+ cotB + cot(π −A−B) .

The critical values are the solutions of the system

∂f

∂A
= − csc2 A+ csc2(π − A−B) = 0

∂f

∂B
= − csc2 B + csc2(π −A−B) = 0 .

Therefore, csc2 A = csc2 B = csc2 C and so A = B = C = π

3 . It is easy to show that

∂2f(π3 ,
π

3 )

∂A2
· ∂

2f(π3 ,
π

3 )

∂B2
−
(

∂2f(π3 ,
π

3 )

∂A∂B

)2

=
64

9
> 0

and

∂2f(π3 ,
π

3 )

∂A2
=

16

3
√
3
> 0 .

Hence, f has a minimum value of
√
3 at

(

π

3 ,
π

3

)

and the desired result follows with equality
holding only for equilateral triangles.

Also solved by N.J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Bob Prielipp and a referee noted that the inequality appears in Bottema et. al., Geo-
metric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1968, 2.38,
pp. 28–29.
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34. [1991, 93] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri
State University, Warrensburg, Missouri.

Let m and k be positive integers and 1 ≤ k ≤ m. Evaluate

∑

n1+2n2+···+mnm=m

n1+n2+···+nm=k

m!

(1!)n1n1! · · · (m!)nmnm!
,

where n1, n2, . . ., nm are non-negative integers.

Solution by the proposers. Let t be fixed. It follows by an easy induction on m that

(1)
dm

dxm
et(e

x

−1) = et(e
x

−1)
m
∑

k=1

tkekx
{

m

k

}

for any positive integer m. Here, {·} denotes a Stirling number of the 2nd kind. Also,
Faà di Bruno’s formula says that if f(x) and g(x) are functions for which all the necessary
derivatives are defined and m is a positive integer, then

dm

dxm
f(g(x)) =

∑

n1+2n2+···+mnm=m

m!

n1! · · ·nm!

(

dn1+···+nm

dxn1+···+nm

f

)

(g(x))

·
(

d

dx
g(x)

1!

)n1

· · ·
(

d
m

dxm
g(x)

m!

)nm

where n1, n2, . . ., nm are non-negative integers. Letting f(x) = etx and g(x) = ex − 1 and
simplifying gives

(2)
dm

dxm
et(e

x

−1) = et(e
x

−1)
m
∑

k=1

tkekx
∑

n1+2n2+···+mnm=m

n1+n2+···+nm=k

m!

(1!)n1n1! · · · (m!)nmnm!
,

where n1, n2, . . ., nm are non-negative integers. Equating the right-hand sides of (1) and
(2) and using the fact that the polynomials t, t2, . . ., tm are linearly independent, it follows
that the expression we want to evaluate is

{

m

k

}

.
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35. [1991, 93] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

Let Fn denote the nth Fibonacci number (F1 = F2 = 1 and Fn = Fn−2 + Fn−1 for
n ≥ 3) and let Ln denote the nth Lucas number (L1 = 1, L2 = 3 and Ln = Ln−2 + Ln−1

for n ≥ 3). Express L2
n as a polynomial in Fn.

Solution I by Alex Necochea, University of Texas-Pan American, Edinburg, Texas; Rus-
sell Euler, Northwest Missouri State University, Maryville, Missouri; and Miguel Paredes,
University of Texas-Pan American, Edinburg, Texas (independently).

Let

α =
1 +

√
5

2
and β =

1−
√
5

2
.

Then α · β = −1. Also, the Binet forms for Fibonacci and Lucas numbers are respectively

Fn =
αn − βn

√
5

and Ln = αn + βn

for n ≥ 1. Then,

L2
n = (αn + βn)2

= α2n + 2αnβn + β2n

= α2n + 2 · (−1)n + β2n

= α2n − 2 · (−1)n + β2n + 4 · (−1)n

= (αn − βn)2 + 4 · (−1)n

= 5 ·
(

αn − βn

√
5

)2

+ 4 · (−1)n

= 5 · F 2
n + 4 · (−1)n .

Therefore, L2
n can be written as a polynomial in Fn as

L2
n = 5F 2

n + 4 · (−1)n .
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Solution II by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas.

The following two identities are standard results for Lucas and Fibonacci numbers:

Ln = Fn+1 + Fn−1 , n ≥ 2

Fn−1Fn+1 = F 2
n + (−1)n , n ≥ 2 .

With these two identites the required result is derived. For n ≥ 2,

L2
n − F 2

n = (Fn+1 + Fn−1)
2 − (Fn+1 − Fn−1)

2

= 4Fn+1Fn−1

= 4
(

F 2
n + (−1)n

)

.

Thus,
L2
n = 5F 2

n + 4(−1)n

and this identity also holds for n = 1.

Also solved by W.F. Wheatley III, Hazlehurst, Mississippi and Alex Necochea, Univer-
sity of Texas-Pan American, Edinburg, Texas (another solution).

Gerald E. Burgum, editor of The Fibonacci Quarterly, noted that

L2
n = 5F 2

n + 4(−1)n

is equation I12 in V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
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36. [1991, 94] Proposed by James Taylor, Central Missouri State University, Warrens-
burg, Missouri.

Show the following relation between an elliptic integral of the third kind with a modulus
of a special form and elliptic integrals of the first and third kind with a simpler modulus.

∏

(

α2,
2
√
l

1 + l

)

= sgn
(

[1− α2]
[

(1− α2)2 − k′
2]) (1 + k′)

√

(1− α2
1)(k

2
1 − α2

1)

(k2 − α2)

∏

(

α2
1, k1

)

+
k2(1 + k1)

2(k2 − α2)
K(k1)

where

K(k) =

∫ π

2

0

dφ
√

1− k2 sin2 φ
,

∏

(

θ, α2, k
)

=

∫ θ

0

dφ

(1− α2 sin2 φ)
√

1− k2 sin2 φ
,

∏

(

α2, k
)

=
∏

(π

2
, α2, k

)

,

and

k =
2
√
l

1 + l
, k′ =

√

1− k2 , k1 =
1− k′

1 + k′
,

(∗) α2 =
(1 + k′)2

2

[

k1 + α2
1 −

√

(1− α2
1)(k

2
1 − α2

1)

]

.

Note: k1 = l for l ≤ 1 and 1
l
for l > 1.
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Solution by the proposer. We begin with two standard relations among elliptic integrals
[1,2], i.e.,

(1) (1 − α2)(k2 − α2)
∏

(

α2, k
)

+ α2k′
2
∏

(

k2 − α2

1− α2
, k

)

= k2(1− α2)K(k)

and

(2)
∏

(

φ, α2
1, k1

)

= (1 + k′)
(k2 − α2)

∏

(θ, α2, k) + (α2
2 − k2)

∏

(θ, α2
2, k)

α2
2 − α2

,

where

sinφ =
(1 + k′) sin θ cos θ
√

1− k2 sin2 θ

and

(3) α2
2 =

(1 + k′)2

2

[

k1 + α2
1 +

√

(1− α2
1)(k

2
1 − α2

1)

]

.

In equation (2), we take θ = π

2 , which gives complete elliptic integrals on the right-hand
side. It is found by comparison with the results of independently obtained special cases that
φ = π, rather than zero. Equation (2) becomes

(4) 2
∏

(α2
1, k1) = (1 + k′)

[

(k2 − α2)
∏

(α2, k) + (α2
2 − k2)

∏

(α2
2, k)

]

/(α2
2 − α2) .

When k can be written in the form k = 2
√
l/(1 + l), it can be shown directly that

α2
2 =

k2 − α2

1− α2
, α2

2 − k2 =
−α2k′2

1− α2
.

We can easily solve (∗) for α2
1 in terms of α2:

α2
1 =

α2

α2 − 1

[

α2

(1 + k′)2
− k1

]

.
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Equations (1) and (4) can each be solved for
∏

(α2
2, k) and the results equated, giving, after

a little algebra,

∏

(

α2,
2
√
l

1 + l

)

= sgn
(

[1− α2]
[

(1− α2)2 − k′
2]) (1 + k′)

√

(1− α2
1)(k

2
1 − α2

1)

(k2 − α2)

∏

(

α2
1, k1

)

+
k2(1 + k1)

2(k2 − α2)
K(k1) .

In obtaining the last equation, use has also been made of the standard relation [1,2],

K

(

2
√
l

1 + l

)

= (1 + k1)K(k1) .
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