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The main purpose of this paper is to prove a structure theorem of the graded Hopf
representation ring of the symmetric groups R(S). We establish a Hopf ring isomorphism

between R(S) and the graded polynomial Hopf ring in an infinite number of variables

C:Z[y17y27"'7yk7"'] )

by using the A-operations in R(S) given in a previous paper [8] in terms of outer plethysms.
1. Introduction. In [8] M-operations are introduced in the graded Hopf representation

ring of the symmetric groups
R(S) = {R(Sn) :n >0}

in terms of outer plethysms and it has been shown that with respect to these operations R(S)
is a special A-ring. Zelevinsky [9] developed a complete structure theory of Hopf algebras
satisfying the positivity and self adjointness, which is similar to the classical theory of Hopf
algebras with commutative multiplication and comultiplication over a field of characteristic
zero [7]. In this Hopf algebra approach, Zelevinsky showed R(S) is isomorphic to the
polynomial Hopf ring
C=Zy1, Y2, Yks- -]

in an infinite number of variables over the integers. Following an elegant proof of Liulevicius
[5] we are going to reproduce the Zelevinsky structure theorem in the context of the A-ring
structure in R(S5).

Let S, be the symmetric group of degree n. Let R(S,) denote the Grothendieck

representation group of S, then we have a graded group

R(S) = {R(Sn) :n >0}
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by setting

and
(R(S))2n+1 =0,

for all non-negative integers n; where
R(Sy) =7 .
A multiplication in R(S) is the map
Mp.q : R(Sp) @ R(Sg) = R(Sp+q)
defined by
Mp,q = Indgz;"sq oWpg,

where
Wpq: R(Sp) @ R(Sy) — R(Sp x Sy)

is the canonical isomorphism, and

SP q .
Inds,fxsq t R(Sp x Sg) = R(Sp+q) 5
the map induced by the embedding of S, x S; as a subgroup of S,;,. A comultiplication
on R(S) is the map
Ap i R(Sy) = Y R(S,) ®R(S,) ,

p+q=n

defined by
1 S
N, = Z . OResSZ;‘ISq )
pt+q=n

In [6] and [9] the following result was proved:
Theorem 1.1. R(S) is a graded Hopf ring with respect to the multiplication m, ; and

the comultiplication A\,,.
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2. Outer Plethysms and M\-Rings. Let S,, and S be symmetric groups of degree n
and k respectively. The wreath product [S,]Sk of S, by Sk (the usual notation for [S,]Sk
is S, 1 Sk) is the set S¥ x S with a multiplication defined by

(al,ag,...,ak;U)(bl,bg,...,bk;T) = (albg—l(l),...,akbo—l(k);UT) y

where a;, b; € S, for k > i > 1 and o, 7 € Si. Clearly under this multiplication, [S,]Sk
is a group. Let M be an S,-module and N be an Si-module. Then M®* @ N is an

[Sn]Sk-module where the group action is given by:
(a1, ar;0) (M1 @ -+~ @My @n) = (a1Me-1(1) @ -+ @ ApMg—1() D ON ),

where a; € S, 0 € Sg, m; € M and n € N. In what follows ® means ®¢ and we
interpret M®° as the 1-dimensional S,-module C, on which S, acts trivially. The map
B : [Sr)Sk — Skn given by

(- Dn+i )

B((ar,az,. .. ax;0)) = ((g(j) — D)n + ag(; (i)

n>i>1 k>j>1,is a canonical embedding of [S,]Sk into Sk,. Thus we have the
induction homomorphism

B =Indgn g+ R([Sx)Sk) = R(Skn) -

Definition. The outer plethysm on R(S) is a map ¢ : R(S) — R(S) given by

) ([N]) = [Ind2n g (M®* @ N)]

where M is an S,-module and N is an Sj-module.
In James-Kerber’s notation [3], the outer plethysm oy ([V]) is denoted by [M]® [N].
In [8], this outer plethysm is used to construct A-operations on R(.S), and it is shown that
with respect to these operations R(S) is a special A-ring (see [1, 2, 4] for definitions and basic
results about A-rings). The A-operations A : R(S) — R(S) are defined for each non-negative
integer k£ by
Ne(IM]) = (M) © (]

19



where [M] € R(S,,) and [nx] € R(Sk), is the trivial sign representation of Sj.
Zelevinsky [9] has shown that R(.S) is a Hopf ring, which is isomorphic to the polynomial
Hopf ring
C=Zy1, Y2, Yks- -]

in an infinite number of variables. Our goal in this paper is to establish a Hopf ring
isomorphism between R(S) and C' in terms of the A-operations in R(S).

3. The Classical Hopf Algebra C. Let Z[t] be the graded polynomial algebra on
one indeterminate t, where the grade of ¢ is 2. Let T' = Z[t]* be the graded dual of Z]t]
with generators yy defined by y(t*) = 1. If A is the comultiplication, then

Alyk) = Z Yi @ Yj -
i+j=k

Let
C:Z[y17y27"'7yk7"'] )

with y9 = 1, and define a Hopf ring structure on C' by making the inclusion i : I' — C a
homomorphism of corings.

The map i has the following universal property: if A is a graded associative algebra
and ¢ : I' — A is a homomorphism of graded abelian groups then there exists a unique

homomorphism of graded algebras @ : C — A such that the following diagram commutes

Moreover if A is a Hopf algebra and ¢ is a map of coalgebras then @ is a Hopf algebra
homomorphism.

By taking the graded dual over Z we obtain a ring homomorphism i* : C* — Z[t], such
that for any partition

m= {17 2™ k)
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of k (in notation, 7 F k) we have

NUBSES FRRR

0, otherwise,

where

k

Yr = Hym- .

=1

The map ¢* has the following universal property: if B is a graded coalgebra with each
B,, a free abelian group of finite rank, then given a homomorphism of graded abelian groups
© : B — Z[t] there exists a unique coalgebra homomorphism © : B — C* such that the

following diagram commutes

Moreover if B is a Hopf algebra and © is an algebra homomorphism then © is a Hopf
algebra homomorphism.

Define a ring homomorphism h : I' — Z[t] by setting h(y,) = t". Then extend this to
an algebra homomorphism which we also denote by h, h: C — Z[t].

Recall that to determine if a Hopf algebra homomorphism is a monomorphism it is
sufficient to show that it is a monomorphism on the primitive elements, these are the

elements = of a Hopf algebra with the property
ANz)=z1+1x,

where A is the comultiplication. The primitives of C' have been studied by Newton (cf.
[5]). The following is Theorem C of [5].

Theorem 3.1. If R is a commutative ring with unit, then the primitives of R ® Cs,, are
all of the form r ® p,, where r € R and p,, € Cs, and they satisfy the following recursion

relation:

Pn = Y1Pn—1 + Y2Pn—2 + -+ (=1)" yn_1pr + (=1)"ny, = 0.
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Lemma 3.2. For each n, h(p,) = (—1)" 1",
Proof. It follows immediately from Newton’s recursion relation.

Now let h* : T' — C* be the graded dual of the map h : C — Z[t]. Note that
i* o h* = h, and since h is an algebra homomorphism, h* is a coalgebra homomorphism,
hence its extension h* : C' — C™* is a Hopf algebra homomorphism satisfying for each integer

k > 1 the following relation

B () = S ()" -

wHk

Theorem 3.3. The map h* : C' — C* is a Hopf algebra isomorphism.

Proof. First note that i*oh* = h, and since h(p,) = (—1)"*1¢", then h* is a monomor-
phism of Hopf algebras. But since C' and C* are free abelian groups of the same rank in

each grading, then h* is an isomorphism.

4. A Hopf Ring Structure of R(S). In this section we are going to show how to
use the A-operations of R(S) to establish a Hopf algebra isomorphism between the graded
Hopf representation ring R(S) and the Hopf ring

C:Z[y17y27"-7yk;,-..] .

First recall that the only primitive irreducible representation in R(S) is the trivial

1-dimensional representation of S7, namely p; = [lg,]. Define a map A : C — R(S), by

Alye) = M(1s,) = [Ls,] © [m] -

Theorem 4.1. The map A : C — R(S) is a Hopf ring homomorphism.

Proof. It is routine to verify that A is a ring homomorphism. Thus it remains to show
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A commutes with the comultiplication. Consider

Ak(Aw) = 2x([15,) © be))
— A([Ind 6, 155 @ mi))
Ak(1EF @)
Lo Ressris )(15* @ i)

= Z (T,
pt+q=Fk
> Yo

. Ressp+q (1®k ®77k)])

pt+q=Fk

— ® ®
- Z Vo ([(Ls? @) ® (157 @)
ptg=Fk
= [

DS @)l @ (157 @)

pt+q=k

Z Alyp) ® Alyq)

ptg=Fk

= (A @A) (Ak(yk)) -

Hence, A is a homomorphism of Hopf rings.
To prove that A is a Hopf ring isomorphism we need the following

Lemma 4.2. The map ® : R(S) — C* defined by
O([M])(y) =< [M], Aly) >,

where [M] € R(S), y € C, and < -,- > denotes the Schur inner product in R(S), is a ring
homomorphism.

Proof. Recall that the multiplication and comultiplication in R(S) are dual under the
Schur inner product. If [M] € R(Sy) and [N] € R(Sy,) and i : S, X Sy, — Spym is the

23



inclusion map, then

<Ind3"is ([M] @ [N]),A(y) >

'n XSy

® |
® [N], (A @ A)(Ay)) >
=Y < [M],A@Y) >< [N],A@Y") >,

where

Ay =) v oy’ .

O([M].[N])(y) =< [M].[N],Aly) >
=D (M) (»e(N)(")

— (@([M)) ® B(N]) (Z Y ® y)

= (®([M]) @ ©([N]))Aly)
= (®([M]).@([N]))(y) -

Hence @ is a ring homomorphism.
Theorem 4.3. The map of Hopf rings A : C' — R(S) is an isomorphism.

Proof. Consider the following

First we are going to show that the diagram commutes. Since ®oA is a ring homomorphism,

it is sufficient to show that

(@ o A)(ys) = h*(yx) = > 5 ,

-k
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for all k > 1. For any y, € C, where
m={m,me,..., Ttk

we have

(@ 0 Alyr))(y=) = (G @ me]) (yr)
=< [15F @], Alyx) >

k
= Z < [1?11 ® nk] & [1S®(k—i) & nk—i]u A(yﬂ') >
i=1 !

- Z < Ays) @ Ays—i), Ayx) >

The third equality from the end is true because of the self-adjointness property in R(S).
Hence the diagram commutes. To finish the proof note that since A* is an isomorphism,
® is surjective. However, the rank of R(Sj) is the same as the rank of Cj,. Hence ® is
an isomorphism. Thus A = ®~! o h* is an isomorphism of Hopf rings. This completes the

proof.
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