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The main purpose of this paper is to prove a structure theorem of the graded Hopf

representation ring of the symmetric groups R(S). We establish a Hopf ring isomorphism

between R(S) and the graded polynomial Hopf ring in an infinite number of variables

C = Z[y1, y2, . . . , yk, . . .] ,

by using the λ-operations in R(S) given in a previous paper [8] in terms of outer plethysms.

1. Introduction. In [8] λ-operations are introduced in the graded Hopf representation

ring of the symmetric groups

R(S) =
{

R(Sn) : n ≥ 0
}

in terms of outer plethysms and it has been shown that with respect to these operationsR(S)

is a special λ-ring. Zelevinsky [9] developed a complete structure theory of Hopf algebras

satisfying the positivity and self adjointness, which is similar to the classical theory of Hopf

algebras with commutative multiplication and comultiplication over a field of characteristic

zero [7]. In this Hopf algebra approach, Zelevinsky showed R(S) is isomorphic to the

polynomial Hopf ring

C = Z[y1, y2, . . . , yk, . . .]

in an infinite number of variables over the integers. Following an elegant proof of Liulevicius

[5] we are going to reproduce the Zelevinsky structure theorem in the context of the λ-ring

structure in R(S).

Let Sn be the symmetric group of degree n. Let R(Sn) denote the Grothendieck

representation group of Sn, then we have a graded group

R(S) =
{

R(Sn) : n ≥ 0
}
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by setting

(R(S))2n = R(Sn) ,

and

(R(S))2n+1 = 0 ,

for all non-negative integers n; where

R(S0) = Z .

A multiplication in R(S) is the map

mp,q : R(Sp)⊗R(Sq)→ R(Sp+q) ,

defined by

mp,q = Ind
Sp+q

Sp×Sq
◦Ψp,q ,

where

Ψp,q : R(Sp)⊗R(Sq)→ R(Sp × Sq)

is the canonical isomorphism, and

Ind
Sp+q

Sp×Sq
: R(Sp × Sq)→ R(Sp+q) ,

the map induced by the embedding of Sp × Sq as a subgroup of Sp+q. A comultiplication

on R(S) is the map

△n : R(Sn)→
∑

p+q=n

R(Sp)⊗R(Sq) ,

defined by

△n =
∑

p+q=n

Ψ−1
p,q ◦ Res

Sp+q

Sp×Sq
.

In [6] and [9] the following result was proved:

Theorem 1.1. R(S) is a graded Hopf ring with respect to the multiplication mp,q and

the comultiplication △n.
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2. Outer Plethysms and λ-Rings. Let Sn and Sk be symmetric groups of degree n

and k respectively. The wreath product [Sn]Sk of Sn by Sk (the usual notation for [Sn]Sk

is Sn ≀ Sk) is the set Sk
n × Sk with a multiplication defined by

(a1, a2, . . . , ak;σ)(b1, b2, . . . , bk; τ) = (a1bσ−1(1), . . . , akbσ−1(k);στ) ,

where ai, bi ∈ Sn for k ≥ i ≥ 1 and σ, τ ∈ Sk. Clearly under this multiplication, [Sn]Sk

is a group. Let M be an Sn-module and N be an Sk-module. Then M⊗k ⊗ N is an

[Sn]Sk-module where the group action is given by:

(a1, . . . , ak;σ)(m1 ⊗ · · · ⊗mk ⊗ n) = (a1mσ−1(1) ⊗ · · · ⊗ akmσ−1(k) ⊗ σn ),

where ai ∈ Sn, σ ∈ Sk, mi ∈ M and n ∈ N . In what follows ⊗ means ⊗C and we

interpret M⊗0 as the 1-dimensional Sn-module C, on which Sn acts trivially. The map

β : [Sn]Sk → Skn given by

β((a1, a2, . . . , ak;σ)) =

(

(j − 1)n+ i

(σ(j) − 1)n+ aσ(j)(i)

)

,

n ≥ i ≥ 1, k ≥ j ≥ 1, is a canonical embedding of [Sn]Sk into Skn. Thus we have the

induction homomorphism

β! = IndSkn

[Sn]Sk
: R([Sn]Sk)→ R(Skn) .

Definition. The outer plethysm on R(S) is a map ϕ[M ] : R(S)→ R(S) given by

ϕ[M ]([N ]) = [IndSkn

[Sn]Sk
(M⊗k ⊗N)] ,

where M is an Sn-module and N is an Sk-module.

In James-Kerber’s notation [3], the outer plethysm ϕ[M ]([N ]) is denoted by [M ]⊙ [N ].

In [8], this outer plethysm is used to construct λ-operations on R(S), and it is shown that

with respect to these operations R(S) is a special λ-ring (see [1, 2, 4] for definitions and basic

results about λ-rings). The λ-operations λ : R(S)→ R(S) are defined for each non-negative

integer k by

λk([M ]) = [M ]⊙ [ηk] ,
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where [M ] ∈ R(Sn) and [ηk] ∈ R(Sk), is the trivial sign representation of Sk.

Zelevinsky [9] has shown thatR(S) is a Hopf ring, which is isomorphic to the polynomial

Hopf ring

C = Z[y1, y2, . . . , yk, . . .]

in an infinite number of variables. Our goal in this paper is to establish a Hopf ring

isomorphism between R(S) and C in terms of the λ-operations in R(S).

3. The Classical Hopf Algebra C. Let Z[t] be the graded polynomial algebra on

one indeterminate t, where the grade of t is 2. Let Γ = Z[t]∗ be the graded dual of Z[t]

with generators yk defined by yk(t
k) = 1. If △ is the comultiplication, then

△(yk) =
∑

i+j=k

yi ⊗ yj .

Let

C = Z[y1, y2, . . . , yk, . . .] ,

with y0 = 1, and define a Hopf ring structure on C by making the inclusion i : Γ → C a

homomorphism of corings.

The map i has the following universal property: if A is a graded associative algebra

and ϕ : Γ → A is a homomorphism of graded abelian groups then there exists a unique

homomorphism of graded algebras ϕ : C → A such that the following diagram commutes

C
x




i

Γ −→
ϕ

A .

Moreover if A is a Hopf algebra and ϕ is a map of coalgebras then ϕ is a Hopf algebra

homomorphism.

By taking the graded dual over Z we obtain a ring homomorphism i∗ : C∗ → Z[t], such

that for any partition

π = {1π1, 2π2 , . . . , kπk}
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of k (in notation, π ⊢ k) we have

i∗((yπ)
∗) =

{

tk, if π = {k};
0, otherwise,

where

yπ =

k
∏

i=1

yπi
.

The map i∗ has the following universal property: if B is a graded coalgebra with each

Bn a free abelian group of finite rank, then given a homomorphism of graded abelian groups

Θ : B → Z[t] there exists a unique coalgebra homomorphism Θ : B → C∗ such that the

following diagram commutes

C∗





yi∗

Z[t] ←−
Θ

B .

Moreover if B is a Hopf algebra and Θ is an algebra homomorphism then Θ is a Hopf

algebra homomorphism.

Define a ring homomorphism h : Γ→ Z[t] by setting h(yn) = tn. Then extend this to

an algebra homomorphism which we also denote by h, h : C → Z[t].

Recall that to determine if a Hopf algebra homomorphism is a monomorphism it is

sufficient to show that it is a monomorphism on the primitive elements, these are the

elements x of a Hopf algebra with the property

△(x) = x⊗ 1 + 1⊗ x ,

where △ is the comultiplication. The primitives of C have been studied by Newton (cf.

[5]). The following is Theorem C of [5].

Theorem 3.1. If R is a commutative ring with unit, then the primitives of R⊗C2n are

all of the form r ⊗ pn where r ∈ R and pn ∈ C2n and they satisfy the following recursion

relation:

pn − y1pn−1 + y2pn−2 + · · ·+ (−1)n−1yn−1p1 + (−1)nnyn = 0 .
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Lemma 3.2. For each n, h(pn) = (−1)n+1tn.

Proof. It follows immediately from Newton’s recursion relation.

Now let h∗ : Γ → C∗ be the graded dual of the map h : C → Z[t]. Note that

i∗ ◦ h∗ = h, and since h is an algebra homomorphism, h∗ is a coalgebra homomorphism,

hence its extension h∗ : C → C∗ is a Hopf algebra homomorphism satisfying for each integer

k ≥ 1 the following relation

h∗(yk) =
∑

π⊢k

(yπ)
∗ .

Theorem 3.3. The map h∗ : C → C∗ is a Hopf algebra isomorphism.

Proof. First note that i∗◦h∗ = h, and since h(pn) = (−1)n+1tn, then h∗ is a monomor-

phism of Hopf algebras. But since C and C∗ are free abelian groups of the same rank in

each grading, then h∗ is an isomorphism.

4. A Hopf Ring Structure of R(S). In this section we are going to show how to

use the λ-operations of R(S) to establish a Hopf algebra isomorphism between the graded

Hopf representation ring R(S) and the Hopf ring

C = Z[y1, y2, . . . , yk, . . .] .

First recall that the only primitive irreducible representation in R(S) is the trivial

1-dimensional representation of S1, namely ρ1 = [1S1 ]. Define a map Λ : C → R(S), by

Λ(yk) = λk(1S1) = [1S1 ]⊙ [ηk] .

Theorem 4.1. The map Λ : C → R(S) is a Hopf ring homomorphism.

Proof. It is routine to verify that Λ is a ring homomorphism. Thus it remains to show
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Λ commutes with the comultiplication. Consider

△k(Λ(yk)) = △k([1S1 ]⊙ [ηk])

= △k([Ind
Sk

[S1]Sk
1⊗k

S1
⊗ ηk])

= △k([1
⊗k

S1
⊗ ηk])

=
∑

p+q=k

(Ψ−1
p,q ◦ Res

Sp+q

Sp×Sq
)([1⊗k

S1
⊗ ηk])

=
∑

p+q=k

Ψ−1
p,q([Res

Sp+q

Sp×Sq
(1⊗k

S1
⊗ ηk)])

=
∑

p+q=k

Ψ−1
p,q([(1

⊗p

S1
⊗ ηp)⊗ (1

⊗q

S1
⊗ ηq)])

=
∑

p+q=k

[(1
⊗p

S1
⊗ ηp)]⊗ [(1

⊗q

S1
⊗ ηq)]

=
∑

p+q=k

Λ(yp)⊗ Λ(yq)

= (Λ ⊗ Λ)(△k(yk)) .

Hence, Λ is a homomorphism of Hopf rings.

To prove that Λ is a Hopf ring isomorphism we need the following

Lemma 4.2. The map Φ : R(S)→ C∗ defined by

Φ([M ])(y) =< [M ],Λ(y) > ,

where [M ] ∈ R(S), y ∈ C, and < ·, · > denotes the Schur inner product in R(S), is a ring

homomorphism.

Proof. Recall that the multiplication and comultiplication in R(S) are dual under the

Schur inner product. If [M ] ∈ R(Sn) and [N ] ∈ R(Sm) and i : Sn × Sm → Sn+m is the
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inclusion map, then

< Ind
Sn+m

Sn×Sm
([M ]⊗ [N ]),Λ(y) >

=< [M ].[N ],Λ(y) >

=< [M ]⊗ [N ],△(Λ(y)) >

=< [M ]⊗ [N ], (Λ⊗ Λ)(△(y)) >

=
∑

< [M ],△(y′) >< [N ],△(y′′) > ,

where

△(y) =
∑

y′ ⊗ y′′ .

Φ([M ].[N ])(y) =< [M ].[N ],Λ(y) >

=
∑

Φ([M ])(y)Φ([N ])(y′′)

= (Φ([M ])⊗ Φ([N ]))

(

∑

y′ ⊗ y′′
)

= (Φ([M ])⊗ Φ([N ]))△(y)

= (Φ([M ]).Φ([N ]))(y) .

Hence Φ is a ring homomorphism.

Theorem 4.3. The map of Hopf rings Λ : C → R(S) is an isomorphism.

Proof. Consider the following

C




yh∗

C∗ ←−
Φ

R(S) .

First we are going to show that the diagram commutes. Since Φ◦Λ is a ring homomorphism,

it is sufficient to show that

(Φ ◦ Λ)(yk) = h∗(yk) =
∑

π⊢k

y∗π ,
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for all k ≥ 1. For any yπ ∈ C, where

π = {π1, π2, . . . , πk} ⊢ k

we have

(Φ ◦ Λ(yk))(yπ) = Φ([1⊗k

S1
⊗ ηk])(yπ)

=< [1⊗k

S1
⊗ ηk],Λ(yπ) >

=

k
∑

i=1

< [1⊗i

S1
⊗ ηk]⊗ [1

S
⊗(k−i)
1

⊗ ηk−i],Λ(yπ) >

=
k

∑

i=1

< Λ(yi)⊗ Λ(yk−i),Λ(yπ) >

=

k
∑

i=1

< (Λ⊗ Λ)(△(yk)),Λ(yπ) >

=< △(Λ(yk)),Λ(yπ) >

=< Λ(yk),m(Λ(yπ)) >

=

k
∏

i=1

< Λ(yk),Λ(yπi
) >

= δkπk
=

∑

k⊢k

(yπ)
∗ = h∗(yk) .

The third equality from the end is true because of the self-adjointness property in R(S).

Hence the diagram commutes. To finish the proof note that since h∗ is an isomorphism,

Φ is surjective. However, the rank of R(Sk) is the same as the rank of C∗
2k. Hence Φ is

an isomorphism. Thus Λ = Φ−1 ◦ h∗ is an isomorphism of Hopf rings. This completes the

proof.
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