
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

25. [1990, 140] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Let P be the free product with amalgamations of any collection {Cγ}γ∈Γ of infinite
cyclic groups, where Γ is an indexing set of cardinality greater than one.

A. Construct an element h ∈ P and a subgroup T < P such that |P : T | is infinite but
|P :< h, T > | is finite.

B. Is h uniquely determined? Is T uniquely determined?

Solution by the proposer.

Let Cγ =< cγ >, let Hγ =< c
mγ
γ >, where mγ are natural numbers, greater than one,

and let

P = ?γ∈Γ(Cγ ;Hγ)

with amalgamated subgroup H.

A. Consider an arbitrary element

h = cqmγγ (γ ∈ Γ)

of H, where q is a natural number. Now, let

T =< cpγγ : γ ∈ Γ > ,

where pγ are prime numbers greater than one and (pγ , qmγ) = 1, for all γ ∈ Γ. We claim
that this h is the required element and also the subgroup T defined as above is the required
subgroup. (Note that if Γ is finite and p is any prime number greater than one, such that
(p, qmγ) = 1, then

T =< cpγ : γ ∈ Γ >) .

Proof of claim: (pγ , qmγ) = 1 implies that there are integers rγ and sγ such that

rγpγ + sγqmγ = 1 .

Thus,

cγ = crγpγ+sγqmγ
γ
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is an element of < T, h >, so that < T, h >= P . Therefore, it only remains to prove that T
is of infinite index in P . To establish this fact, we choose α, β, . . ., η distinct in Γ, and we
show that g1, g2, . . ., gr, . . . are incongruent (mod T ), where

gr = (cαcβ · · · cη)r

and r is a natural number. For r and s different natural numbers, we wish to verify that

g−1
r gs /∈ T .

If not, then there exists an element t ∈ T such that

g−1
r gs = (cαcβ · · · cη)s−r = t =

n∏
i=1

c
kipγi
γi ,

where ki is a non-zero integer. Now if r > s, then

1 = cαcβ · · · cη · · · cαcβ · · · cηt .

If γ1 6= η, no cancellations or simplifications are possible. Also, if γ1 = η, then

cηc
k1pγ1
γ1 = c

1+k1pγ1
η

is not 1. Thus, we have a non-trivial expression for 1, a contradiction. A similar argument
will apply for r < s. Therefore, r 6= s implies that

gr 6≡ gs (mod T ) .

This completes the proof.

B. Obviously, neither h nor T is unique. Because a different q will produce a different
h and also, as primes pγ change so does T .

26*. [1990, 140] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Prove that

38∑
k=1

sin
k8π

38
=
√

19 .

Comment by the editor.

No solutions have been received on this problem to date.
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27. [1990, 141] Proposed by Don Redmond, Southern Illinois University, Carbondale,
Illinois.

Show that ∫ ∞
1

t− [t]

t2(t+ 1)2
(2t+ 1)dt = log 2− 1

2
,

where log 2 denotes the natural logarithm of 2 and [t] is the greatest integer less than or
equal to t.

Solution I by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

First note that, for any integer i ≥ 2, ‘integration by parts’ yields

∫ i

i−1

(t− [t])(2t+ 1)

t2(t+ 1)2
dt = − t− [t]

t(t+ 1)

∣∣∣∣i
i−1

+ log

(
t

t+ 1

)∣∣∣∣i
i−1

= − 1

i(i+ 1)
+ log

(
i

i+ 1

)
− log

(
i− 1

i

)

= −
(

1

i
− 1

i+ 1

)
+ log

(
i

i+ 1

)
− log

(
i− 1

i

)
,

since, for any integer k ≥ 1, t− [t]→ 0 as t→ k+ and t− [t]→ 1 as t→ k−. Thus for any
integer n > 1,

∫ n

1

(t− [t])(2t+ 1)

t2(t+ 1)2
dt = −

n∑
i=2

(
1

i
− 1

i+ 1

)
+

n∑
i=2

(
log

(
i

i+ 1

)
− log

(
i− 1

i

))

= −1

2
+

1

n+ 1
+ log

(
n

n+ 1

)
− log

(
1

2

)
.

Let n→∞. It now follows that∫ ∞
1

(t− [t])(2t+ 1)

t2(t+ 1)2
dt = −1

2
− log

(
1

2

)

= log 2− 1

2
.
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Solution II by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

It can be easily shown that

(t− n)(2t+ 1)

t2(t+ 1)2
=

1

t
− n

t2
− 1

t+ 1
+

n+ 1

(t+ 1)2
.

Hence for every positive integer n,

∫ n+1

n

t− [t]

t2(t+ 1)2
(2t+ 1)dt =

∫ n+1

n

(t− n)

t2(t+ 1)2
(2t+ 1)dt

=

(
log t+

n

t
− log(t+ 1)− n+ 1

t+ 1

)∣∣∣∣∣
n+1

n

= log(n+ 1)− log n− 1

n+ 1
− log(n+ 2) + log(n+ 1) +

1

n+ 2
.

Hence the integral in the given problem equals

lim
n→∞

n∑
r=1

(
log(r + 1)− log r + log(r + 1)− log(r + 2) +

1

r + 2
− 1

r + 1

)

= lim
n→∞

(
log(n+ 1) + log 2− log(n+ 2) +

1

n+ 2
− 1

2

)

= lim
n→∞

(
log

(
n+ 1

n+ 2

)
+ log 2 +

1

n+ 2
− 1

2

)

= log 2− 1

2
.

This completes the solution.
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Solution III by the proposer.

Let a be a positive real number and b be a nonnegative real number. Then

(1)

∞∑
k=1

1

(ak + b)(a(k + 1) + b)
=

1

a

∞∑
k=1

(
1

ak + b
− 1

a(k + 1) + b

)
=

1

a(a+ b)
.

If we write this sum as an integral we have

(2)

∞∑
k=1

1

(ak + b)(a(k + 1) + b)
=

∫ ∞
1−

d[t]

(at+ b)(a(t+ 1) + b)

=

∫ ∞
1

dt

(at+ b)(a(t+ 1) + b)
+

∫ ∞
1−

d([t]− t)
(at+ b)(a(t+ 1) + b)

= I1 + I2 .

We have

(3)

I1 =
1

a

∫ ∞
1

(
1

at+ b
− 1

at+ b+ a

)
dt

=
1

a2

(
lim
t→∞

log
at+ b

at+ b+ a
− log

a+ b

2a+ b

)

= − 1

a2
log

a+ b

2a+ b
.

To deal with I2 we integrate by parts to get

(4)

I2 =
[t]− t

(at+ b)(at+ b+ a)

∣∣∣∣∞
1−
−
∫ ∞

1

(t− [t])

(at+ b)2(at+ a+ b)2
(2a2t+ a2 + 2ab)dt

=
1

(a+ b)(2a+ b)
−
∫ ∞

1

(t− [t])(2a2t+ a2 + 2ab)

(at+ b)2(at+ a+ b)2
dt .
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If we now combine (1)–(4) we obtain

∫ ∞
1

(t− [t])(2a2t+ a2 + 2ab)

(at+ b)2(at+ a+ b)2
dt = − 1

a2(a+ b)
− 1

a3
log

a+ b

2a+ b
+

1

a(a+ b)(2a+ b)

= − 1

a3
log

a+ b

2a+ b
− 1

a2(2a+ b)
.

If we take a = 1 and b = 0 we get the desired result.

28. [1990, 141] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

Let ABC be an equilateral triangle with segment lengths as indicated in the diagram.
Determine s as a function of a, b and c.

Solution by the proposer.

Using the law of sines in triangle BCO gives

sin(60◦ − φ)

b
=

sin(60◦ − θ)
c

,
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which simplifies to

(1) b sin θ − c sinφ =
√

3(b cos θ − c cosφ) .

However, from triangles ABO and ACO,

(2) cos θ =
−a2 + b2 + s2

2bs
,

and

(3) cosφ =
−a2 + c2 + s2

2cs
.

Substituting (2) and (3) into (1) yields

(4) b sin θ − c sinφ =

√
3(b2 − c2)

2s
.

Since the area of triangle ABC is the sum of the areas of triangles ABO, ACO and BCO,

(5) b sin θ + b sin(60◦ − θ) + c sinφ =

√
3s

2
.

Adding equations (4) and (5) and simplifying with the use of (2) leads to

(6)
√

3b sin θ =
s2 + a2 + b2 − 2c2

2s
.

Now, square equation (6), replace sin2 θ with 1− cos2 θ and use (2) to arrive at

s4 − (a2 + b2 + c2)s2 + a4 + b4 + c4 − a2b2 − a2c2 − b2c2 = 0 ,

which has

s =

√
a2 + b2 + c2 +

√
−3(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2)

2

as the desired root.
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