SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

25.  [1990, 140] Proposed by Mohammad K. Azarian, University of Evansville,
FEvansville, Indiana.

Let P be the free product with amalgamations of any collection {C,} er of infinite
cyclic groups, where I" is an indexing set of cardinality greater than one.

A. Construct an element h € P and a subgroup T' < P such that |P : T is infinite but
|P:< h,T > | is finite.

B. Is h uniquely determined? Is T uniquely determined?
Solution by the proposer.

Let C, =<c¢y >, let H, =< ey >, where m. are natural numbers, greater than one,
and let

P =yer(Cy; Hy)
with amalgamated subgroup H.
A. Consider an arbitrary element
h=cl"™ (yel)
of H, where ¢ is a natural number. Now, let
T'=<dp:yvel'>,

where p., are prime numbers greater than one and (p,,gm.) =1, for all v € I'. We claim
that this h is the required element and also the subgroup 7' defined as above is the required
subgroup. (Note that if T' is finite and p is any prime number greater than one, such that
(pa qm’)’) = 17 then

T=<cd:vyel>).

Proof of claim: (p.,gm+) = 1 implies that there are integers r, and s, such that
TyPy + Syqm, = 1.

Thus,
— TPy Sy amy
Cy = C,y

151



is an element of < T, h >, so that < T, h >= P. Therefore, it only remains to prove that T
is of infinite index in P. To establish this fact, we choose «, 3, ..., n distinct in I", and we
show that g1, g2, - .-, gr, - .. are incongruent  (mod T'), where

Gr = (Cacﬁ Ce CU)T
and r is a natural number. For r and s different natural numbers, we wish to verify that
9r 'gs ¢T.

If not, then there exists an element ¢ € T such that
ok
g;lgs = (Cacﬂ T Cn)57T =l= Hcfy:pw )
i=1

where k; is a non-zero integer. Now if r > s, then
l=cqcg---cp---cacg---cyt .
If 41 # 7, no cancellations or simplifications are possible. Also, if v; = 1, then
k 1+k
cncvip’u _ C»,7+ 1P~

is not 1. Thus, we have a non-trivial expression for 1, a contradiction. A similar argument
will apply for r < s. Therefore, r # s implies that

gr Z9gs (modT) .

This completes the proof.

B. Obviously, neither h nor T is unique. Because a different ¢ will produce a different
h and also, as primes p, change so does T'.

26*. [1990, 140] Proposed by Stanley Rabinowitz, Westford, Massachusetts.
Prove that

Comment by the editor.

No solutions have been received on this problem to date.
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27. [1990, 141] Proposed by Don Redmond, Southern Illinois University, Carbondale,
Illinois.

Show that

<t =t 1
(2t + 1)dt = log2 — =
/1 t2(t+1)2( t+ 1)dt = log 5

where log 2 denotes the natural logarithm of 2 and [t] is the greatest integer less than or
equal to t.

Solution I by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

First note that, for any integer ¢ > 2, ‘integration by parts’ yields

i . i
+ log ()

1 t+1

t2(t +1)2 Ct(t+1)

/i (t — [t])(2t+1)dt t— [t]
1—1

i—1

(1 1y, i (il
G Tar) i) el )

since, for any integer k > 1,¢t—[t] - 0ast — kT and t — [t] = 1 as t — k~. Thus for any
integer n > 1,

[ =5 ) 5 ) ()

Let n — oo. It now follows that

/1"0 (t—[t])(2t + 1)dt: 1 _log<1)

12(t + 1)2 2 2

1
=log2 — - .
og 2
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Solution II by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin.

It can be easily shown that

(t—-n)2t+1) 1 n 1 n+1

2t+12 ot 2 t+1+(t+1)2'

Hence for every positive integer n,

n+1 _ n+1 -n
/n %(2t+1)dt/ﬂ M(ztﬂ)dt

n+1

n n+1
= (1ogt+ 2 —log(t+1) —
(og + 3~ los(t+1) t—i—l)

1
zlog(n+1)—logn—m—log(n+2)+log(n+l)+m )

Hence the integral in the given problem equals

- 1 1
nan;OZ(log(r+ 1) —logr +log(r + 1) —log(r +2) + P Sy 1>

r=1

. 1 1
= nl;ngo (log(n +1)+log2 —log(n+2)+ PR 2)

n+1 11
= lim [log( 2= ) +log2 + —— — =
HL%<Og(n+2>+°g T2 2)

1
—log2— = .
og 9

This completes the solution.
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Solution III by the proposer.

Let a be a positive real number and b be a nonnegative real number. Then

oo

= 1 1 1 1 1
(1) kZ:l(ak—Fb)(a(k—Fl)—i—b) :a’;<ak+b_a(k+1)+b> - ala+0b)

If we write this sum as an integral we have

= 1 [ d[t]
;(ak—&-b)(a(k—kl)—kb) 7/_ (at +b)(a(t+1) +b)

(2) Y dt o d([t] —t)
_/1 (at +b)(a(t+ 1) +b) +/, (at +b)(a(t + 1) + b)

=L+1.

We have

]1:1/ LI L dt
a fq at+b at+b+a

1 at+b a+b
3 = — | lim 1 -1
®) a2<tggo ®uttbta Og2a+b)

11 a+b

a? Og2a+b'

To deal with I, we integrate by parts to get

1] -t

I =
> (at+b)(at +b+a)

[e%¢] 0o ¢ i 2
- /1 (at + b)(Q(at[j]L)a T et a o+ 2abjdt

_ 1 < (t — [t])(2a%t + a® + 2ab)
(a+b)(2a+b)/1 (@t + b2t +arp? O
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If we now combine (1)—(4) we obtain

/W(t—[t])(2a2t+a2+2ab)dt 1 1y a+b+ 1

1 (at+0b)%(at +a+b)? - a%2(a+b) a3 &2atb ala+b)(2a +b)
ilo at+b 1

@ %2+ b a?(2a+0b) -

If we take a = 1 and b = 0 we get the desired result.

28. [1990, 141] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

Let ABC' be an equilateral triangle with segment lengths as indicated in the diagram.
Determine s as a function of a, b and c.

Solution by the proposer.
Using the law of sines in triangle BCO gives

sin(60° — ¢) _ sin(60° — 6)

b c ’
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which simplifies to
(1) bsinf — csin¢g = V3(bcosf — ccos @) .
However, from triangles ABO and ACO,

—a2 4+ b2+ 2
2 Q= "~ =
2) €08 2bs ’
and
3) cosp= LTS

2cs

Substituting (2) and (3) into (1) yields

VB - )

4 C g
(4) bsinf — csin ¢ 5

Since the area of triangle ABC is the sum of the areas of triangles ABO, ACO and BCO,

(5) bsin¢9+bsin(60°—9)+csin¢:g :

Adding equations (4) and (5) and simplifying with the use of (2) leads to

242 2 92
(6) V3bsing = ST
2s
Now, square equation (6), replace sin®# with 1 — cos? # and use (2) to arrive at
st —(a® + 0+ cA)s? Fat 0t - a?b? —ad?P -V =0,

which has

\/a2 + b2+ 2+ /=3(a* + b + c* — 2a2H? — 2a2c2 — 2b2c2?)
S =
2

as the desired root.

157



